COSC 341 — Assignment 2
Due: Wednesday, May 7, 11:59 p.m.

Instructions: Please submit a PDF file of your solutions, along with a text file of your Turing
machine code via Blackboard. Point values for each question are indicated in parentheses thus:

(0).
Even if a question only seems to ask for an answer e.g., “How many ...
reason the answer is correct is also required.

”

, an explanation of the

Despite the fact that there appear to be 11 points, the maximum number of points available for
this assignment is 10, corresponding to the 10% weight that it has in your final grade. In other
words, if you tackle all questions, and only lose one mark, then you will get a perfect score of 10.

1. (2) Show, using the pumping lemma for regular languages or the Myhill-Nerode theorem,
that (a):
L={a"b"|0<n,0<m< 2n}

is not regular. (b) Describe a pushdown automaton, M, such that L = L(M), and (c) give
a context-free grammar for L.

2. (2) Show, using the pumping lemma for context free languages, that
L={a"b"|0<n, m=nl}
is not context free.

3. (3) Design a (standard) Turing machine to accept the language over the alphabet {a,b, #}
consisting of all words of the form w#v for where w € {a,b}* is arbitrary and v is the
concatenation of 0 or more copies of w. So it should accept all of:

a#, a#aaaa, ab#, ab#ab, ab#abababababababababab,
and none of:
a#b, a#aaba, ab#a, ab#aba, ab#abababababbababababab.

As well as a high-level description of how the machine operates, please submit a text file
suitable for use in |[Anthony Morphett’s Turing machine simulator,

4. (1) Give an explicit reduction from HALT to show that there is no algorithm to decide
whether a Turing machine will halt exactly on inputs of the form 1111---1.

5. (2) Consider the following decision problem:

HALT IN BOUNDED SPACE

Instance: A Turing machine M, and a word w.

Problem: Does M halt on input w without ever moving the read/write head beyond the final
character of w?

Show that there is an algorithm for solving HALT IN BOUNDED SPACEE

6. (1) Show that the problem of determining whether a word w € {0,1}*, thought of as
representing a non-negative integer written in binary, is equal to twice a perfect square
belongs to P (you can argue at the level of “real” algorithms or programming languages
rather than Turing machines)

IHint: Under what circumstances can we be certain that we have entered a loop?


https://morphett.info/turing/turing.html

