
COSC 341
Theory of Computing

Lecture 3
What is computation?

Stephen Cranefield
stephen.cranefield@otago.ac.nz

1

Lecture slides (mostly) by Michael Albert

mailto:stephen.cranefield@otago.ac.nz

Are we really doing computing when accepting languages?

▶ In what sense, if any, does a language acceptor (e.g. a DFA) solve
computational problems?

▶ All it does is recognise the language it accepts.
▶ At a stretch we could think of it as providing a method mapping String to

boolean.
▶ Is that really enough to represent a general class of computational problems?

2

Example: Computing the square root of 2

▶ Suppose we have a device (not necessarily a DFA) that computes (only) the
square root of 2. We turn it on and it displays 1.4142

▶ Can we view that as a language recognition problem?
▶ Suppose we accept all strings that are prefixes (or consecutive roundings) of√

2:

1

1.4

1.41

1.414

. . .

▶ Is this a good enough model of computation?

3

Example: Recognising any square root
▶ How can we generalise this so that our machine can recognise any square

root? (
√
5,
√
17, . . .)

▶ Do we still have a language recognition problem?
▶ Consider a calculator:

▶ Enter the digits of the input number, e.g. 241
▶ Press the “√” button
▶ The digits of the answer are shown.
▶ Suppose we view this input-output sequence as a language, e.g.:

2 4 1
√

1
2 4 1

√
1 5

2 4 1
√

1 5 .
2 4 1

√
1 5 . 5

▶ Is this a good enough model of computation?
▶ No, because we have to guess a possible answer for the machine to verify.

4

From verifier to computer
▶ Can we combine our square root verifier with another machine to produce a

square root computer?
▶ Yes, we could run a “generate numbers” machine (leaving the bounds of

language recognisers) to produce inputs to verify.
▶ Loop until accepted:

1. Generate an(other) output character
2. Append it to the input
3. Verify it
4. If rejected, go to step 1 move on the next output character
5. If accepted, accept the current sequence

▶ Clearly this is computable (but horribly inefficient).
▶ Claim: this means that a model of language acceptance is good enough for

thinking about what we can and can’t compute.
▶ Note: we can generalise this beyond computing mathematical functions, e.g.

the language of database description, query then answer.

5

What constrains a reasonable model of computation?

For today’s purposes just one thing:

Each device (or method or . . .) that is allowed as a ‘language recogniser’ must be
described by a finite string (i.e., program) over some finite alphabet Σd

6

The uncomputable exists
Theorem
No reasonable model of computation allows every language to be recognised.
Proof 1: a cardinality argument.
▶ There are a countable number of device descriptions, i.e. the finite sequences

of characters over Σd can be put into a list (d1, d2, d3, . . .). One way is to list
all 1-character programs in lexicographic order, then the 2-character ones,
and so on. Note: many of these ‘programs’ may be syntactically incorrect.

▶ Let’s assume our devices recognise languages over the same finite alphabet
(ΣL). As for Σd, we can list the finite strings over ΣL in some order
{(s1, s2, . . .)}. We can now represent each string by its index in this list.

▶ Each language L over ΣL is a set of these strings, which we can represent as
a infinite binary sequence, e.g. bL = (b1, b2, b3, b4, . . .), where bi = 1 if the
string with index i is in the language, and 0 otherwise.

▶ The set of sequences of this form can be viewed as fractions in base 2:
0.b1b2b3 . . . , which are the real numbers between 0 and 1: an uncountable set.

7

The uncomputable exists

Theorem
No reasonable model of computation allows every language to be recognised.

Proof 1 continued
▶ Our countable list of devices can only recognise a countable subset of this

uncountable set, therefore there must be an uncountable number of
languages that our devices cannot recognise

Details: see https://legacy.earlham.edu/%7Epeters/writing/infapp.htm
(especially Theorems 3, 16 and 17).

8

https://legacy.earlham.edu/%7Epeters/writing/infapp.htm

The uncomputable exists
Theorem
No reasonable model of computation allows every language to be recognised.

Proof 2: construction of a language L different from L1, L2, . . .

▶ As before, put our device descriptions into a sequence (d1, d2, d3, . . .).
▶ List the languages each of these devices recognises, in the corresponding

order: (L1, L2, L3, . . .). If di is syntactically incorrect, set Li = {}

▶ Similarly, list each string over ΣL in some order (s1, s2, s3, . . .)
▶ We consider whether each si is contained in each Lj (see the table on the

next slide).
▶ We use the diagonal elements of the table to choose whether each si ∈ L.

L is constructed to differ from each Li: it will contain si if and only if Li does
not contain it.

▶ Therefore language L does not equal any Li in the list and must not be
recognised by any of our enumerated devices.

9

The uncomputable exists

Theorem
No reasonable model of computation allows every language to be recognised.

Proof 2: construction of a language L different from L1, L2, . . .

si

Lj L1 L2 L3 L4 · · ·

s1 ∈ ̸∈ /∈ ∈ · · ·
s2 ̸∈ ̸∈ ∈ ̸∈ · · ·
s3 ̸∈ ̸∈ ∈ ∈ · · ·
s4 ∈ ∈ ∈ /∈ · · ·
...

...
...

...
...

. . .

Construct L = {si : i ∈ N, si /∈ Li} = {s2, s4, . . . }

10

