COSC 341 Theory of Computing Lecture 3 What is computation?

Stephen Cranefield stephen.cranefield@otago.ac.nz

1

Lecture slides (mostly) by Michael Albert

Are we really doing computing when accepting languages?

- In what sense, if any, does a language acceptor (e.g. a DFA) solve computational problems?
- All it does is recognise the language it accepts.
- At a stretch we could think of it as providing a method mapping String to boolean.
- Is that really enough to represent a general class of computational problems?

Example: Computing the square root of 2

- Suppose we have a device (not necessarily a DFA) that computes (only) the square root of 2. We turn it on and it displays 1.4142....
- Can we view that as a language recognition problem?
- Suppose we accept all strings that are prefixes (or consecutive roundings) of $\sqrt{2}$:

 $1 \\ 1.4 \\ 1.41 \\ 1.414$

. . .

Is this a good enough model of computation?

Example: Recognising any square root

- ► How can we generalise this so that our machine can recognise any square root? (√5, √17,...)
- Do we still have a language recognition problem?
- Consider a calculator:
 - Enter the digits of the input number, e.g. 241
 - Press the "√" button
 - The digits of the answer are shown.
 - Suppose we view this input-output sequence as a language, e.g.:

$$241\sqrt{1} 241\sqrt{15} 241\sqrt{15} 241\sqrt{15} 5.5$$

- Is this a good enough model of computation?
- No, because we have to guess a possible answer for the machine to verify.

From verifier to computer

- Can we combine our square root verifier with another machine to produce a square root computer?
- Yes, we could run a "generate numbers" machine (leaving the bounds of language recognisers) to produce inputs to verify.
 - Loop until accepted:
 - 1. Generate an(other) output character
 - 2. Append it to the input
 - 3. Verify it
 - 4. If rejected, go to step 1 move on the next output character
 - 5. If accepted, accept the current sequence
- Clearly this is computable (but horribly inefficient).
- Claim: this means that a model of language acceptance is good enough for thinking about what we can and can't compute.
- Note: we can generalise this beyond computing mathematical functions, e.g. the language of database description, query then answer.

What constrains a reasonable model of computation?

For today's purposes just one thing:

Each device (or method or ...) that is allowed as a 'language recogniser' must be described by a finite string (i.e., program) over some finite alphabet Σ_d

The uncomputable exists

Theorem

No reasonable model of computation allows every language to be recognised.

Proof 1: a cardinality argument.

- ► There are a <u>countable</u> number of device descriptions, i.e. the finite sequences of characters over Σ_d can be put into a list $(d_1, d_2, d_3, ...)$. One way is to list all 1-character programs in lexicographic order, then the 2-character ones, and so on. Note: many of these 'programs' may be syntactically incorrect.
- Let's assume our devices recognise languages over the same finite alphabet (Σ_L) . As for Σ_d , we can list the finite strings over Σ_L in some order $\{(s_1, s_2, ...)\}$. We can now represent each string by its index in this list.
- ► Each language L over Σ_L is a set of these strings, which we can represent as a infinite binary sequence, e.g. $b_L = (b_1, b_2, b_3, b_4, ...)$, where $b_i = 1$ if the string with index i is in the language, and 0 otherwise.
- The set of sequences of this form can be viewed as fractions in base 2: $0.b_1b_2b_3...$, which are the real numbers between 0 and 1: an <u>uncountable</u> set.

Theorem

No reasonable model of computation allows every language to be recognised.

Proof 1 continued

Our countable list of devices can only recognise a countable subset of this uncountable set, therefore there must be an uncountable number of languages that our devices cannot recognise

Details: see https://legacy.earlham.edu/%7Epeters/writing/infapp.htm (especially Theorems 3, 16 and 17).

The uncomputable exists

Theorem

No reasonable model of computation allows every language to be recognised.

Proof 2: construction of a language L different from $L_1, L_2, ...$

- As before, put our device descriptions into a sequence $(d_1, d_2, d_3, ...)$.
- List the languages each of these devices recognises, in the corresponding order: $(L_1, L_2, L_3, ...)$. If d_i is syntactically incorrect, set $L_i = \{\}$
- Similarly, list each string over Σ_L in some order (s_1, s_2, s_3, \dots)
- We consider whether each s_i is contained in each L_j (see the table on the next slide).
- We use the diagonal elements of the table to choose whether each s_i ∈ L. L is constructed to differ from each L_i: it will contain s_i if and only if L_i does not contain it.
- Therefore language L does not equal any L_i in the list and must not be recognised by any of our enumerated devices.

The uncomputable exists

Theorem

No reasonable model of computation allows every language to be recognised.

Proof 2: construction of a language L different from $L_1, L_2, ...$

Construct $L = \{s_i : i \in \mathbb{N}, s_i \notin L_i\} = \{s_2, s_4, \dots\}$