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Class representative election?

Do we have any volunteers to serve as class representative?
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The landscape of languages (so far)

We have defined four ways of generating and/or accepting languages:
▶ Deterministic finite-state automata
▶ Regular grammars
▶ Non-deterministic finite-state automata
▶ Regular expressions

What relationships do we know about the groups of languages they define?
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Known relationships
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An arrow A → B means “every language that can be generated/accepted
by A can also be generated/accepted by B”

DFA

RegG RegL

NFA

(1)

(2) (3)

(1): Because we can replace transitions
between states by grammar rules.

(2): Because we can replace grammar
rules by transitions between states.

(3): Because the base cases are
accepted by NFAs, and the closure
properties apply.



Base cases for Regular language → NFA

L = {}

ZS

L = {ϵ}

ZS
ε

L = {a}

ZS
a

5



Recursive cases for Regular language → NFA
L1 ∪ L2

ZS

S1ε

S2

ε

Z1
…

Z2
…

ε

ε

concat(L1, L2)

Z2S1 Z1
…

S2
…ε

L∗
1 (Kleene star)

ZS1 Z1
… ε
ε
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Arrows to add

DFA

RegG RegL

NFA
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Two claims

▶ Every language accepted by an NFA is also accepted by a DFA.
▶ Every language accepted by an NFA is regular.
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From NFA to DFA

0 1

b

b

a

We want to think about “all the places we might be” when we begin in some (set
of) state(s) and process a letter. We know that we start from state 0.

0
a−→ ∅

0
b−→ 01

01
a−→ 0

01
b−→ 01

∅ a,b−→ ∅
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The equivalent DFA

0 ∅

01

a

b a

b

a, b
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The subset construction algorithm

Let an NFA A with state set S and alphabet Σ be given. Define a DFA, D over the
same alphabet as follows:
▶ The states of D are precisely the subsets of S (usually denoted 2S , or P(S)).
▶ The initial state of D is the ϵ-closure of the initial state of A (this is the set of all

states that can be reached from the initial state of A using only ϵ-transitions).
▶ If X ⊆ S and a ∈ Σ, then the a-transition from X in D is to the set Y which is

the ϵ-closure of all the states reachable from any state in X by an a-transition.
▶ The accepting states of D are all those subsets of S that contain at least one

accepting state.
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Formal version of previous example

0 ∅

01 1

a

b a

b

a b

a, b

We didn’t see state 1 when we constructed the previous example because it’s
unreachable – but it’s easier to include states like this in describing the general
construction.
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From NFAs to regular languages (enriched labels)

The fundamental idea in showing that the language accepted by any NFA is
regular is to extend the state transitions from ϵ or letters of Σ to languages
themselves.

For instance, rather than having two edges labelled a and b from one state to
another, we could use a single edge labelled a+ b to represent the same situation.

Using this idea we can gradually prune away states in an NFA in its initial form
until we reach a two-state machine accepting the same language with a regular
language on its unique arrow.

Back to our example . . .
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NFA to regular language

S

Z

0 1

b

b

a

ϵ

ϵ

It would be easiest to eliminate node 1 first, but to show the general ideas I’ll start
with node 0.
For each path X → 0 → Y we enhance (or add) the edge from X → Y with the
concatenation of the label on X → 0, the Kleene-star of the loop-label on 0, and
the label from 0 to Y . That captures all the ways we could get from X to Y via 0.
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Elimination of state 0

S

Z

1

b∗

b∗b

ab∗

ab∗b

Next we can eliminate state 1.
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Elimination of state 1

S

Z

b∗ + b∗b (ab∗b)∗ ab∗

Now we’re done.
Since we’ve only adjusted labels on edges by adding new stuff that we obtain by
concatenating together previous labels and their Kleene-stars, then all the labels
must always be regular languages.

If we’d eliminated 1 first the regular language we got would have been:

(b+ ba)∗.

Convince yourself that this is the same thing!
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