
COSC 341
Theory of Computing

Lecture 5
It’s all the same

Stephen Cranefield
stephen.cranefield@otago.ac.nz

1

Lecture slides (mostly) by Michael Albert

Keywords: NFA, DFA, regular grammar,
regular language

mailto:stephen.cranefield@otago.ac.nz


Class representative election?

Do we have any volunteers to serve as class representative?

2



The landscape of languages (so far)

We have defined four ways of generating and/or accepting languages:
▶ Deterministic finite-state automata
▶ Regular grammars
▶ Non-deterministic finite-state automata
▶ Regular expressions

What relationships do we know about the groups of languages they define?

3



Known relationships

4

An arrow A → B means “every language that can be generated/accepted
by A can also be generated/accepted by B”

DFA

RegG RegL

NFA

(1)

(2) (3)

(1): Because we can replace transitions
between states by grammar rules.

(2): Because we can replace grammar
rules by transitions between states.

(3): Because the base cases are
accepted by NFAs, and the closure
properties apply.



Base cases for Regular language → NFA

L = {}

ZS

L = {ϵ}

ZS
ε

L = {a}

ZS
a

5



Recursive cases for Regular language → NFA
L1 ∪ L2

ZS

S1ε

S2

ε

Z1
…

Z2
…

ε

ε

concat(L1, L2)

Z2S1 Z1
…

S2
…ε

L∗
1 (Kleene star)

ZS1 Z1
… ε
ε

6



Arrows to add

DFA

RegG RegL

NFA

7



Two claims

▶ Every language accepted by an NFA is also accepted by a DFA.
▶ Every language accepted by an NFA is regular.

8



From NFA to DFA

0 1

b

b

a

We want to think about “all the places we might be” when we begin in some (set
of) state(s) and process a letter. We know that we start from state 0.

0
a−→ ∅

0
b−→ 01

01
a−→ 0

01
b−→ 01

∅ a,b−→ ∅
9



The equivalent DFA

0 ∅

01

a

b a

b

a, b

10



The subset construction algorithm

Let an NFA A with state set S and alphabet Σ be given. Define a DFA, D over the
same alphabet as follows:
▶ The states of D are precisely the subsets of S (usually denoted 2S , or P(S)).
▶ The initial state of D is the ϵ-closure of the initial state of A (this is the set of all

states that can be reached from the initial state of A using only ϵ-transitions).
▶ If X ⊆ S and a ∈ Σ, then the a-transition from X in D is to the set Y which is

the ϵ-closure of all the states reachable from any state in X by an a-transition.
▶ The accepting states of D are all those subsets of S that contain at least one

accepting state.

11



Formal version of previous example

0 ∅

01 1

a

b a

b

a b

a, b

We didn’t see state 1 when we constructed the previous example because it’s
unreachable – but it’s easier to include states like this in describing the general
construction.

12



From NFAs to regular languages (enriched labels)

The fundamental idea in showing that the language accepted by any NFA is
regular is to extend the state transitions from ϵ or letters of Σ to languages
themselves.

For instance, rather than having two edges labelled a and b from one state to
another, we could use a single edge labelled a+ b to represent the same situation.

Using this idea we can gradually prune away states in an NFA in its initial form
until we reach a two-state machine accepting the same language with a regular
language on its unique arrow.

Back to our example . . .

13



NFA to regular language

S

Z

0 1

b

b

a

ϵ

ϵ

It would be easiest to eliminate node 1 first, but to show the general ideas I’ll start
with node 0.
For each path X → 0 → Y we enhance (or add) the edge from X → Y with the
concatenation of the label on X → 0, the Kleene-star of the loop-label on 0, and
the label from 0 to Y . That captures all the ways we could get from X to Y via 0.

14



Elimination of state 0

S

Z

1

b∗

b∗b

ab∗

ab∗b

Next we can eliminate state 1.

15



Elimination of state 1

S

Z

b∗ + b∗b (ab∗b)∗ ab∗

Now we’re done.
Since we’ve only adjusted labels on edges by adding new stuff that we obtain by
concatenating together previous labels and their Kleene-stars, then all the labels
must always be regular languages.

If we’d eliminated 1 first the regular language we got would have been:

(b+ ba)∗.

Convince yourself that this is the same thing!
16


