COSC 341
Theory of Computing
Lecture 5
It's all the same

Stephen Cranefield
stephen.cranefield@otago.ac.nz

Lecture slides (mostly) by Michael Albert

Keywords: NFA, DFA, regular grammatr,
regular language


mailto:stephen.cranefield@otago.ac.nz

Class representative election?

Do we have any volunteers to serve as class representative?



The landscape of languages (so far)

We have defined four ways of generating and/or accepting languages:
» Deterministic finite-state automata
» Regular grammars
» Non-deterministic finite-state automata
» Regular expressions

What relationships do we know about the groups of languages they define?



Known relationships

An arrow A — B means “every language that can be generated/accepted
by A can also be generated/accepted by B”

(1): Because we can replace transitions

DFA between states by grammar rules.

(2): Because we can replace grammar
RegG RegL rules by transitions between states.

(2) (3) (3): Because the base cases are
NEA accepted by NFAs, and the closure
properties apply.




Base cases for Regular language — NFA

L={e L ={a}

® © -0 -0



Recursive cases for Regular language — NFA
L1 ULs

YoS-g)--
OO
concat(Lq, Ls)

2O OSORO

L7 (Kleene star)



Arrows to add

DFA

7

RegG

RegL

L7

NFA




Two claims

» Every language accepted by an NFA is also accepted by a DFA.
» Every language accepted by an NFA is regular.



From NFA to DFA
b

1N
O ®

We want to think about “all the places we might be” when we begin in some (set
of) state(s) and process a letter. We know that we start from state 0.

00
0201
01 %0
01 -2 01
025



The equivalent DFA



The subset construction algorithm

Let an NFA A with state set S and alphabet X be given. Define a DFA, D over the
same alphabet as follows:

| 2
| 2

| 2

The states of D are precisely the subsets of S (usually denoted 25, or P(S)).

The initial state of D is the e-closure of the initial state of A (this is the set of all
states that can be reached from the initial state of A using only e-transitions).
If X C S anda € %, then the a-transition from X in D is to the set Y which is
the e-closure of all the states reachable from any state in X by an a-transition.

The accepting states of D are all those subsets of S that contain at least one
accepting state.



Formal version of previous example

©
b > a [b
S

We didn’t see state 1 when we constructed the previous example because it's
unreachable — but it’s easier to include states like this in describing the general
construction.

0
K



From NFAs to regular languages (enriched labels)

The fundamental idea in showing that the language accepted by any NFA is
regular is to extend the state transitions from ¢ or letters of ¥ to languages
themselves.

For instance, rather than having two edges labelled a and b from one state to
another, we could use a single edge labelled a + b to represent the same situation.

Using this idea we can gradually prune away states in an NFA in its initial form
until we reach a two-state machine accepting the same language with a regular
language on its unique arrow.

Back to our example ...



NFA to regular language

?
@?@i@

b

It would be easiest to eliminate node 1 first, but to show the general ideas I'll start
with node 0.

For each path X — 0 — Y we enhance (or add) the edge from X — Y with the
concatenation of the label on X — 0, the Kleene-star of the loop-label on 0, and
the label from 0 to Y. That captures all the ways we could get from X to Y via 0.



Elimination of state 0

Next we can eliminate state 1.



Elimination of state 1

©

/ + 0*b (ab*b)* ab*
Now we’re done.

Since we’ve only adjusted labels on edges by adding new stuff that we obtain by
concatenating together previous labels and their Kleene-stars, then all the labels
must always be regular languages.

If we’'d eliminated 1 first the regular language we got would have been:
(b+ba)*.

Convince yourself that this is the same thing!



