
COSC 341
Theory of Computing

Lectures 7 and 8
Myhill-Nerode and its consequences

Stephen Cranefield
stephen.cranefield@otago.ac.nz

1

Lecture slides (mostly) by Michael Albert

Keywords: Myhill-Nerode theorem, Moore’s
algorithm, Hopcroft’s algorithm

mailto:stephen.cranefield@otago.ac.nz

A note about regular language closure properties (Tut. 5 update)
▶ Only some of the closure properties for regular languages can be proven

constructively using NFAs (e.g. union, concatenation and Kleene-star).
▶ For complement, making accepting states non-accepting (and vice versa)

works for DFAs, not NFAs.
▶ For string reversals, note that reversing transitions in a DFA will (in general)

result in an NFA, but this is OK for proving this closure property.
▶ Intersection can be proven given union and complement using De Morgan’s

laws:
L1 ∩ L2 = L1 ∪ L2

▶ How can we show this constructively given NFAs A1 and A2 that accept L1

and L2?
▶ Apply the subset construction to convert the NFAs to DFAs.
▶ Switch accepting and non-accepting states in both DFAs.
▶ Make these into NFAs in standard form.
▶ Apply the NFA union construction.
▶ Convert the result to a DFA via the subset construction.
▶ Switch accepting and non-accepting states

2

Revision: State-equivalence

Let A be a DFA over Σ. Define a relation, ∼state on Σ∗ called state equivalence by:

w ∼state v ⇐⇒
the state reached in A by processing v is
the same as that reached by processing
w.

3

Revision: Suffix-equivalence

Given a language L over alphabet Σ, a distinguishing extension of two words
u, v ∈ Σ∗ is any word w ∈ Σ∗ such that exactly one of uw and vw is in L.

Example: L = {an : n is even}. For any k, a is a distinguishing extension of ak and
ak+1.

We define suffix equivalence (modulo L) as follows:

u ∼suffix v ⇐⇒ there is no distinguishing extension for u and v

Alternatively, for any w ∈ Σ∗ define the suffix language of w modulo L:

Suff (w,L) = {y ∈ Σ∗ : wy ∈ L}.

Then u ∼suffix v just means Suff (u, L) = Suff (v, L).

4

The Myhill-Nerode theorem

Theorem
A language is regular if and only if its suffix-equivalence relation has only finitely
many equivalence classes.

5

Revision: Uses of the Myhill-Nerode Theorem

1. Try to show that a language is regular by an exhaustive case analysis. Begin
with ϵ and consider increasingly longer strings while trying to find
distinguishing extensions until no more equivalence classes can be found.

2. Prove a language is not regular through logical analysis that shows there
must be an infinite number of suffix-equivalence classes.

Example for case 2:

L = {anbn : n ≥ 0}.

▶ Given ai and aj for distinct i and j, consider the extension bi.
▶ aibi ∈ L but ajbi ̸∈ L.
▶ Thus bi is a distinguishing extension and ai and aj are in different

suffix-equivalence classes.

6

Part 1 of the theorem’s proof

▶ Suppose that L is regular.
▶ There is a DFA, A that accepts it.
▶ The state-equivalence relation for A has only finitely many equivalence

classes.
▶ If two words are state-equivalent then they are also suffix-equivalent.
▶ Therefore, the suffix-equivalence relation also has only finitely many classes.

7

Part 2 of the theorem’s proof

▶ Suppose that the suffix-equivalence relation for L has only finitely many
equivalence classes.

▶ Define a DFA, A whose states are (alternatively, are labelled by) the
suffix-equivalence classes. The hypothesis is exactly that there are only
finitely many of these.

▶ Define the initial state as [ϵ]∼suffix

▶ Define a state [w]∼suffix to be accepting if w ∈ L.

▶ The transition on letter a from state [w]∼suffix is to [wa]∼suffix .

▶ This DFA accepts (exactly) L.

8

Consequences of the proof

▶ If L is a regular language then there is a DFA accepting it such that the
number of states of the DFA is equal to the number of equivalence classes of
∼suffix.

▶ That’s the smallest number of states possible since if two words are not
suffix-equivalent, they cannot be state-equivalent.

▶ And in fact that minimal automaton is unique since the a-transition from a
state corresponding to a particular suffix language must be to the state
corresponding to all the words in that language beginning with a (after
deleting the first character).

▶ If we are given some DFA can we construct the corresponding minimum one?
This is called DFA minimisation.

9

DFA minimisation

The Myhill-Nerode Theorem shows there is a unique minimal DFA for any regular
language. Suppose we have a DFA. Can we construct the unique minimal DFA in
a systematic way?

Given a DFA A (we assume from now on that all states are reachable)
▶ What states are we certain correspond to different suffix-equivalence

classes1?
▶ What starting partition does this give us that is coarser than the partition

required for suffix-equivalence?
▶ How can we refine this partition?

1We can talk about suffix-equivalence for states, because all words that lead to that state are
definitely suffix-equivalent

10

Minimisation idea (Moore’s algorithm)

Given a DFA we want to find the equivalence relation on its states that
corresponds to suffix-equivalence.
▶ Begin with an equivalence relation (or its partition) that we know is coarser

than suffix-equivalence.
▶ Specifically, accepting states and non-accepting states are not

suffix-equivalent (since the former accept ϵ and the latter don’t).

Now loop based on the current partition.
▶ Within each class, see if we can tell things apart by looking at their transitions.
▶ If so, refine the partition to reflect this, and repeat.
▶ This terminates since a partition can’t be properly refined infinitely often.

Are we done?

11

Why are we done?

Observation

The final partition of the states has the property that for any pair of states, x and y,
in the same part and any letter, a, if

x
a→ x′ and y

a→ y′

then x′ and y′ are in the same part.

Suppose that, starting from x and y there is a distinguishing extension, i.e. for
some word w we accept when x is followed by w but not when y is followed by w,
or vice-versa.

Applying the observation above repeatedly this would mean that the states we
reach on following w from x or from y would lie in the same part. But, one is
accepting and the other isn’t so they don’t!

12

Moore’s algorithm

▶ If we minimise a DFA by implementing the above in the most direct manner
then we are performing Moore’s algorithm

▶ In many practical contexts this is good enough.
▶ Examples.
▶ Worst-case complexity is O(n2|Σ|).
▶ At most n rounds are required.
▶ Each can be carried out in O(n|Σ|) time if we maintain the states in a sorted

order so that all states in the same (current) part are consecutive.

13

https://en.wikipedia.org/wiki/DFA_minimization#Moore's_algorithm

Hopcroft’s algorithm

Let X and Y be subsets of the states and a a letter. Say that X is split by (a, Y) if
there are some elements of X that go to Y under a and some that don’t.

▶ Maintain both the current partition (coarser than ∼suffix modulo L) and a
queue of sets from that partition called the active splitters.

▶ Both are initialised as the accepting/non-accepting partition.
▶ While the queue is not empty, remove its head B:

▶ For each letter a and each current partition P that is split by (a,B):
▶ Replace P in the current partitions by its split.
▶ If P was an active splitter, replace it in the queue by both parts of the split.
▶ If not, add just the smaller of the two new parts to the queue of active splitters.

Using the partition refinement data structure, Hopcroft’s algorithm can be
implemented with a run-time bound of O(n|Σ| log n).

14

https://en.wikipedia.org/wiki/DFA_minimization#Hopcroft's_algorithm

