
COSC 341
Theory of Computing

Lectures 7 and 8
Myhill-Nerode and its consequences

Stephen Cranefield
stephen.cranefield@otago.ac.nz

1

Lecture slides (mostly) by Michael Albert

Keywords: Myhill-Nerode theorem, Moore’s
algorithm, Hopcroft’s algorithm

mailto:stephen.cranefield@otago.ac.nz


A note about regular language closure properties (Tut. 5 update)
▶ Only some of the closure properties for regular languages can be proven

constructively using NFAs (e.g. union, concatenation and Kleene-star).
▶ For complement, making accepting states non-accepting (and vice versa)

works for DFAs, not NFAs.
▶ For string reversals, note that reversing transitions in a DFA will (in general)

result in an NFA, but this is OK for proving this closure property.
▶ Intersection can be proven given union and complement using De Morgan’s

laws:
L1 ∩ L2 = L1 ∪ L2

▶ How can we show this constructively given NFAs A1 and A2 that accept L1

and L2?
▶ Apply the subset construction to convert the NFAs to DFAs.
▶ Switch accepting and non-accepting states in both DFAs.
▶ Make these into NFAs in standard form.
▶ Apply the NFA union construction.
▶ Convert the result to a DFA via the subset construction.
▶ Switch accepting and non-accepting states
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Revision: State-equivalence

Let A be a DFA over Σ. Define a relation, ∼state on Σ∗ called state equivalence by:

w ∼state v ⇐⇒
the state reached in A by processing v is
the same as that reached by processing
w.
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Revision: Suffix-equivalence

Given a language L over alphabet Σ, a distinguishing extension of two words
u, v ∈ Σ∗ is any word w ∈ Σ∗ such that exactly one of uw and vw is in L.

Example: L = {an : n is even}. For any k, a is a distinguishing extension of ak and
ak+1.

We define suffix equivalence (modulo L) as follows:

u ∼suffix v ⇐⇒ there is no distinguishing extension for u and v

Alternatively, for any w ∈ Σ∗ define the suffix language of w modulo L:

Suff (w,L) = {y ∈ Σ∗ : wy ∈ L}.

Then u ∼suffix v just means Suff (u, L) = Suff (v, L).
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The Myhill-Nerode theorem

Theorem
A language is regular if and only if its suffix-equivalence relation has only finitely
many equivalence classes.
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Revision: Uses of the Myhill-Nerode Theorem

1. Try to show that a language is regular by an exhaustive case analysis. Begin
with ϵ and consider increasingly longer strings while trying to find
distinguishing extensions until no more equivalence classes can be found.

2. Prove a language is not regular through logical analysis that shows there
must be an infinite number of suffix-equivalence classes.

Example for case 2:

L = {anbn : n ≥ 0}.

▶ Given ai and aj for distinct i and j, consider the extension bi.
▶ aibi ∈ L but ajbi ̸∈ L.
▶ Thus bi is a distinguishing extension and ai and aj are in different

suffix-equivalence classes.
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Part 1 of the theorem’s proof

▶ Suppose that L is regular.
▶ There is a DFA, A that accepts it.
▶ The state-equivalence relation for A has only finitely many equivalence

classes.
▶ If two words are state-equivalent then they are also suffix-equivalent.
▶ Therefore, the suffix-equivalence relation also has only finitely many classes.
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Part 2 of the theorem’s proof

▶ Suppose that the suffix-equivalence relation for L has only finitely many
equivalence classes.

▶ Define a DFA, A whose states are (alternatively, are labelled by) the
suffix-equivalence classes. The hypothesis is exactly that there are only
finitely many of these.

▶ Define the initial state as [ϵ]∼suffix

▶ Define a state [w]∼suffix to be accepting if w ∈ L.

▶ The transition on letter a from state [w]∼suffix is to [wa ]∼suffix .

▶ This DFA accepts (exactly) L.
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Consequences of the proof

▶ If L is a regular language then there is a DFA accepting it such that the
number of states of the DFA is equal to the number of equivalence classes of
∼suffix.

▶ That’s the smallest number of states possible since if two words are not
suffix-equivalent, they cannot be state-equivalent.

▶ And in fact that minimal automaton is unique since the a-transition from a
state corresponding to a particular suffix language must be to the state
corresponding to all the words in that language beginning with a (after
deleting the first character).

▶ If we are given some DFA can we construct the corresponding minimum one?
This is called DFA minimisation.
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DFA minimisation

The Myhill-Nerode Theorem shows there is a unique minimal DFA for any regular
language. Suppose we have a DFA. Can we construct the unique minimal DFA in
a systematic way?

Given a DFA A (we assume from now on that all states are reachable)
▶ What states are we certain correspond to different suffix-equivalence

classes1?
▶ What starting partition does this give us that is coarser than the partition

required for suffix-equivalence?
▶ How can we refine this partition?

1We can talk about suffix-equivalence for states, because all words that lead to that state are
definitely suffix-equivalent
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Minimisation idea (Moore’s algorithm)

Given a DFA we want to find the equivalence relation on its states that
corresponds to suffix-equivalence.
▶ Begin with an equivalence relation (or its partition) that we know is coarser

than suffix-equivalence.
▶ Specifically, accepting states and non-accepting states are not

suffix-equivalent (since the former accept ϵ and the latter don’t).

Now loop based on the current partition.
▶ Within each class, see if we can tell things apart by looking at their transitions.
▶ If so, refine the partition to reflect this, and repeat.
▶ This terminates since a partition can’t be properly refined infinitely often.

Are we done?
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Why are we done?

Observation

The final partition of the states has the property that for any pair of states, x and y,
in the same part and any letter, a, if

x
a→ x′ and y

a→ y′

then x′ and y′ are in the same part.

Suppose that, starting from x and y there is a distinguishing extension, i.e. for
some word w we accept when x is followed by w but not when y is followed by w,
or vice-versa.

Applying the observation above repeatedly this would mean that the states we
reach on following w from x or from y would lie in the same part. But, one is
accepting and the other isn’t so they don’t!
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Moore’s algorithm

▶ If we minimise a DFA by implementing the above in the most direct manner
then we are performing Moore’s algorithm

▶ In many practical contexts this is good enough.
▶ Examples.
▶ Worst-case complexity is O(n2|Σ|).
▶ At most n rounds are required.
▶ Each can be carried out in O(n|Σ|) time if we maintain the states in a sorted

order so that all states in the same (current) part are consecutive.
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Hopcroft’s algorithm

Let X and Y be subsets of the states and a a letter. Say that X is split by (a, Y ) if
there are some elements of X that go to Y under a and some that don’t.

▶ Maintain both the current partition (coarser than ∼suffix modulo L) and a
queue of sets from that partition called the active splitters.

▶ Both are initialised as the accepting/non-accepting partition.
▶ While the queue is not empty, remove its head B:

▶ For each letter a and each current partition P that is split by (a,B):
▶ Replace P in the current partitions by its split.
▶ If P was an active splitter, replace it in the queue by both parts of the split.
▶ If not, add just the smaller of the two new parts to the queue of active splitters.

Using the partition refinement data structure, Hopcroft’s algorithm can be
implemented with a run-time bound of O(n|Σ| log n).
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