COSC 341
Theory of Computing
Lectures 7 and 8
Myhill-Nerode and its consequences

Stephen Cranefield
stephen.cranefield@otago.ac.nz

Lecture slides (mostly) by Michael Albert

Keywords: Myhill-Nerode theorem, Moore’s
algorithm, Hopcroft’s algorithm

mailto:stephen.cranefield@otago.ac.nz

A note about regular language closure properties (Tut. 5 update)

» Only some of the closure properties for regular languages can be proven
constructively using NFAs (e.g. union, concatenation and Kleene-star).

» For complement, making accepting states non-accepting (and vice versa)
works for DFAs, not NFAs.

» For string reversals, note that reversing transitions in a DFA will (in general)
result in an NFA, but this is OK for proving this closure property.

» Intersection can be proven given union and complement using De Morgan’s
laws:

LiNLy=1L1ULs
» How can we show this constructively given NFAs A; and A that accept L,
and Ly?
» Apply the subset construction to convert the NFAs to DFAs.
» Switch accepting and non-accepting states in both DFAs.
»> Make these into NFAs in standard form.
> Apply the NFA union construction.
» Convert the result to a DFA via the subset construction.
» Switch accepting and non-accepting states

Revision: State-equivalence

Let A be a DFA over X. Define a relation, ~gate On X* called state equivalence by:

the state reached in A by processing v is
w ~state v <= the same as that reached by processing
w.

Revision: Suffix-equivalence

Given a language L over alphabet ¥, a distinguishing extension of two words
u,v € 3* is any word w € ¥* such that exactly one of uw and vw is in L.

Example: L = {a" : n is even}. For any k, a is a distinguishing extension of a* and
ak L

We define suffix equivalence (modulo L) as follows:

u ~guffix ¥ <= there is no distinguishing extension for v and v

Alternatively, for any w € ¥* define the suffix language of w modulo L:

Suff (w,L) ={y € ¥* : wy € L}.

Then u ~gysix v just means Suff (u, L) = Suff (v, L).

The Myhill-Nerode theorem

Theorem
A language is regular if and only if its suffix-equivalence relation has only finitely
many equivalence classes.

Revision: Uses of the Myhill-Nerode Theorem

1. Try to show that a language is regular by an exhaustive case analysis. Begin
with e and consider increasingly longer strings while trying to find
distinguishing extensions until no more equivalence classes can be found.

2. Prove a language is not regular through logical analysis that shows there
must be an infinite number of suffix-equivalence classes.

Example for case 2:
L ={a"b":n > 0}.

» Given o’ and o’ for distinct i and j, consider the extension b'.

> a'b' € Lbuta/bi ¢ L.

» Thus b; is a distinguishing extension and «‘ and o’ are in different
suffix-equivalence classes.

Part 1 of the theorem’s proof

v

Suppose that L is regular.
> There is a DFA, A that accepts it.

The state-equivalence relation for A has only finitely many equivalence
classes.

> |f two words are state-equivalent then they are also suffix-equivalent.
Therefore, the suffix-equivalence relation also has only finitely many classes.

v

v

Part 2 of the theorem’s proof

» Suppose that the suffix-equivalence relation for L has only finitely many
equivalence classes.

» Define a DFA, A whose states are (alternatively, are labelled by) the
suffix-equivalence classes. The hypothesis is exactly that there are only
finitely many of these.

> Define the initial state as [¢]

~suffix

> Define a state [w] to be accepting if w € L.

~suffix

> The transition on letter a from state [w]~,, is 10 [wa]~ -

» This DFA accepts (exactly) L.

Consequences of the proof

» If L is a regular language then there is a DFA accepting it such that the
number of states of the DFA is equal to the number of equivalence classes of
~suffix-

» That’s the smallest number of states possible since if two words are not
suffix-equivalent, they cannot be state-equivalent.

» And in fact that minimal automaton is unique since the a-transition from a
state corresponding to a particular suffix language must be to the state
corresponding to all the words in that language beginning with a (after
deleting the first character).

» If we are given some DFA can we construct the corresponding minimum one?
This is called DFA minimisation.

DFA minimisation

The Myhill-Nerode Theorem shows there is a unique minimal DFA for any regular
language. Suppose we have a DFA. Can we construct the uniqgue minimal DFA in

a systematic way?
Given a DFA A (we assume from now on that all states are reachable)

» What states are we certain correspond to different suffix-equivalence
classes'?

» What starting partition does this give us that is coarser than the partition
required for suffix-equivalence?

» How can we refine this partition?

"We can talk about suffix-equivalence for states, because all words that lead to that state are
definitely suffix-equivalent

Minimisation idea (Moore’s algorithm)

Given a DFA we want to find the equivalence relation on its states that
corresponds to suffix-equivalence.

» Begin with an equivalence relation (or its partition) that we know is coarser
than suffix-equivalence.

» Specifically, accepting states and non-accepting states are not
suffix-equivalent (since the former accept € and the latter don't).

Now loop based on the current partition.

» Within each class, see if we can tell things apart by looking at their transitions.

> If s0, refine the partition to reflect this, and repeat.
» This terminates since a partition can’t be properly refined infinitely often.

Are we done?

Why are we done?

Observation
The final partition of the states has the property that for any pair of states, x and vy,
in the same part and any letter, a, if
52 and yS4
then ' and iy’ are in the same part.

Suppose that, starting from x and y there is a distinguishing extension, i.e. for
some word w we accept when z is followed by w but not when y is followed by w,
or vice-versa.

Applying the observation above repeatedly this would mean that the states we
reach on following w from z or from y would lie in the same part. But, one is
accepting and the other isn’t so they don’t!

Moore’s algorithm

v

If we minimise a DFA by implementing the above in the most direct manner
then we are performing Moore’s algorithm

In many practical contexts this is good enough.
Examples.

Worst-case complexity is O(n?|3|).

At most n rounds are required.

Each can be carried out in O(n|X]|) time if we maintain the states in a sorted
order so that all states in the same (current) part are consecutive.

vVvYyyvyy

https://en.wikipedia.org/wiki/DFA_minimization#Moore's_algorithm

Hopcroft’s algorithm

Let X and Y be subsets of the states and « a letter. Say that X is split by (a,Y) if
there are some elements of X that go to Y under ¢ and some that don't.

» Maintain both the current partition (coarser than ~g,ix modulo L) and a
queue of sets from that partition called the active splitters.

» Both are initialised as the accepting/non-accepting partition.
» While the queue is not empty, remove its head B:
> For each letter « and each current partition P that is split by (a, B):

> Replace P in the current partitions by its split.
> |If P was an active splitter, replace it in the queue by both parts of the spilit.
> |If not, add just the smaller of the two new parts to the queue of active splitters.

Using the partition refinement data structure, Hopcroft’s algorithm can be
implemented with a run-time bound of O(n|%|logn).

https://en.wikipedia.org/wiki/DFA_minimization#Hopcroft's_algorithm

