COSC 341
Theory of Computing
Lecture 11
Introducing Turing machines

Stephen Cranefield
stephen.cranefield@otago.ac.nz

Lecture slides (mostly) by Michael Albert

Keywords: Turing machines


mailto:stephen.cranefield@otago.ac.nz

Revision: The model matters

A pushdown automaton cannot accept the language:

POWERS-OF-2 = {a" : n = 2" for some k > 0}

But, we saw that replacing the stack with a queue would allow us to recognise this
language. So pushdown automata are not sufficiently powerful to be a general
model of computing.

But where does this end?



Turing machines

» Alan Turing introduced an abstract version of a mechanical computer, now
known as the Turing machine (TM).

» As far as anyone knows, this model and every other “sufficiently powerful”
model of mechanical computing solve exactly the same set of problems.

» Because, among other things, any “sufficiently powerful” mechanical
computer should be able to simulate any other mechanical computer.

» The idea that there is a a pool of sufficiently and equally powerful computing
models (including the Turing machine) is called the Church-Turing thesis.



What is a Turing machine?

>

vvyyypy

v

A finite alphabet: input symbols (lower case), punctuation (usually things like
#), blank (_,), and markers (upper case letters or symbols other than letters).

Finite control i.e., a finite number of possible internal states.
A single infinite (in one direction) tape divided into cells.
Each cell can hold a single character from the alphabet.

A read-write head, which can determine the contents of the cell it is reading
(and write onto that cell).

Initially, the input is on the tape (usually preceded by a blank or some
“beginning of input” character for convenience).



How does a Turing Machine work?

Start with the read-write head over the leftmost cell and execute a sequence of
atomic steps, each of which is:

» Read the current symbol on the tape

» Based on it and the current state

» Write a symbol on the tape
»> Move the read-write head one place left, right, or leave it in place.
» Change the internal state

» Halt if no transition is defined for the current conditions (and accept or not
according to the state we're in)

» Crashes (moving the read-write head past the left-hand end of the tape) and
infinite computations are possible and are considered to be non-accepting.



What is the transition function?

» Inputs: Current symbol, current state

» Outputs: New state, new symbol, new direction to move

» Deterministic? Yes, for the moment, i.e., at most one transition defined for the
current symbol and state.

» Remember, no transition means halt.



A formal definition (not the only one)

A Turing machine is a 7-tuple (Q, 2, T, 6, qo, Gaccept, Greject), Where @, X and T are all
finite sets and

> () is the set of states,

> 3 is the input alphabet,

» I'is the tape alphabet, where the blank symbol _isinT"and ¥ C T,
>

QxTI = QxT x{L,S, R} is the transition function
(L means “left”, S means “stay” and R means “right”),

> ¢o € Q is the start state,
> gaccept € Q is the accept state,

Some versions also require a single rejection state greject € @, Greject 7 Gaccept-

Modified from M. Sipser, Introduction to the theory of computation (to remove the single rejection
state and to allow spaces in the input and the tape head to stay in the current state)



And now the examples

We will use Anthony Morphett’s Turing Machine simulator.
» Accept if the input is w#w for some w € {a,b}*.
» And many more.


http://morphett.info/turing/

