
COSC 341
Theory of Computing

Lecture 15
When will it stop?

Stephen Cranefield
stephen.cranefield@otago.ac.nz

1

Lecture slides (mostly) by Michael Albert

Keywords: Halting problem, Turing reduction

mailto:stephen.cranefield@otago.ac.nz


The halting problem: is HALT recursive?

Theorem

The halting language:

HALT = {R(M)#w : M halts on w}

is not recursive.

▶ Where to begin in proving a negative like this?
▶ Contradiction seems the only hope, if the result were false then there would

be a TM that “solves the halting problem”. Perhaps we can do some
engineering with it.

2



A detour via Russell’s paradox

To give a hint of the type of thing we want to do consider Russell’s paradox.

▶ Let Ω be the set of all sets and define:

B = {x ∈ Ω : x ̸∈ x},

the set of all sets that are not members of themselves.
▶ Is B ∈ B?
▶ Self-reference (e.g. x ̸∈ x) creates problems – and a TM which analyses other

TM’s could also analyse (a representation of) itself . . .

3



Can we build a halting machine?

▶ For the sake of contradiction suppose that a TM H (a halting machine)
decides HALT.

▶ Remember, this means that H halts on all inputs and accepts only and all
inputs of the form R(M)#w where:
▶ R(M) is the representation of a TM, and
▶ w ∈ Σ∗,
▶ M halts on w.

HR(M)#w
M halts on w

other

4



A diagonalisation argument

Mi

R(Mj) R(M1) R(M2) R(M3) R(M4) · · ·

M1 accept reject reject accept · · ·
M2 reject reject accept reject · · ·
M3 reject reject accept accept · · ·
M4 accept accept accept reject · · ·

...
...

...
...

...
. . .

Construct machine D such that the outcome of D(RM(D)) causes a contradiction
if it appears as any element of the diagonal.

5



Alternative step-by-step approach: From H to AH

▶ From this, we can construct an anti-halting machine AH which, on input of the
form R(M)#w behaves as follows:
▶ First H is run on the input.
▶ If H halts and rejects, i.e., M would loop on w, AH halts (and accepts)
▶ If H halts and accepts, i.e., M would halt on w, AH enters an infinite loop.

6



From AH to D

▶ Now we introduce the self-reference.
▶ Define the machine D that does the following on input R(M) (note, no w):

▶ It writes a copy of R(M) on the tape, so the tape is now R(M)#R(M).
▶ It rewinds the read-write head to the left-hand end of the (modified) tape.
▶ It runs AH.

7



What does D do?

▶ It tells us something about the behaviour of programs given their own source
code as input.

▶ For any TM, M , if M would halt on input R(M) then D loops on input R(M).
▶ For any TM, M , if M would loop on input R(M) then D halts on input R(M).
▶ Well, D is a TM, so, “What would D do on input R(D)?”
▶ Oh dear.

8



What does it all mean?

▶ From the assumption that HALT was recursive we obtained a
paradox/contradiction.

▶ So HALT is not recursive.
▶ But, we know HALT is recursively enumerable, since it’s the language

accepted by the universal TM.
▶ Therefore its complement is not even recursively enumerable.

9



Turing reducibility

▶ Carrying out this sort of diagonal argument from scratch is a pain.
▶ Can we build a tool that allows us to conclude that some languages are not

recursive directly?
▶ Yes - the notion of Turing reducibility
▶ “If there is a mechanical procedure for converting all instances of a known

undecidable problem into instances the problem we’re trying to solve
(maintaining their positive or negative status), then our problem must be
undecidable.”

10



Turing reducibility, the details

Given two languages L and K (or their associated decision problems), we say that
L is Turing reducible to K, and write L

TR−→ K, if there is a TM, M which always
halts, and on input w leaves some other word r(w) on the tape in such a way that:

w ∈ L if and only if r(w) ∈ K.

If L is an undecidable (i.e., non-recursive) language and L
TR−→ K, then K must

also be undecidable.

Otherwise we could run the reduction, and then apply the decision procedure for
K. So, one way to show that K is undecidable is to show that HALT

TR−→ K.

11



BLANK-HALT (example for reducibility)

BLANK-HALT = {R(M) |M halts on a blank input tape}.

HALT
TR−→ BLANK-HALT

The reducing machine, given an instance R(M)#w of HALT, creates (the
representation of) a TM, M ′ whose behaviour is:
▶ Write w on a blank input tape
▶ Run M on w

The machine M ′ halts on blank input if and only if R(M) halts on w. Therefore, if
we could decide BLANK-HALT then we could also decide HALT. But we can’t.

12



Rice’s theorem
“All non-trivial semantic properties of programs are undecidable” [Wikipedia]

Theorem
Let C be a set of recursively enumerable languages that is non-trivial (neither ∅ nor the set of all RE
languages). The set of Turing machines that accept some language in C, written
LC = {R(M) : L(M) ∈ C} is undecidable.

▶ Consider some non-trivial C and assume that LC is decidable.
▶ Assume the empty language ∅ is not in C (if not, work with LC̄ instead).
▶ Choose some machine I whose language, L(I), belongs to C. This is possible because C is

non-empty and contains RE languages.
▶ We produce a new Turing machine Mw that takes an input R(M)#w and operates as follows:

▶ On any input x it first simulates M running on w.
▶ If this halts, it then runs I on x.

▶ If M halts on w, then Mw behaves like I, so L(Mw) = L(I) ∈ C and therefore R(Mw) ∈ LC .
▶ If M does not halt on w, then L(Mw) = ∅ ̸∈ C (assumption above) so R(Mw) ̸∈ LC .
▶ Thus, R(M)#w ∈ HALT if and only if R(Mw) ∈ LC .
▶ We assumed that LC is decidable, which would mean that the halting problem is

decidable—but we know it is not. Contradiction!
Modified from https://theory.stanford.edu/ trevisan/cs154-12/noterice.pdf 13

https://theory.stanford.edu/~trevisan/cs154-12/noterice.pdf


Examples of undecidable semantic properties of programs

Does a given TM:
▶ Accept a regular language?
▶ Accept a finite number of inputs?
▶ Accept only representations of prime numbers?
▶ Perform the same computation as another specified TM?

From https://theory.stanford.edu/ trevisan/cs154-12/noterice.pdf and Wikipedia.

14

https://theory.stanford.edu/~trevisan/cs154-12/noterice.pdf

