COSC 341
Theory of Computing
Lecture 15
When will it stop?

Stephen Cranefield
stephen.cranefield@otago.ac.nz

Lecture slides (mostly) by Michael Albert

Keywords: Halting problem, Turing reduction

mailto:stephen.cranefield@otago.ac.nz

The halting problem: is HALT recursive?

Theorem

The halting language:

HALT = {R(M)#w : M halts on w}

is not recursive.

» Where to begin in proving a negative like this?

» Contradiction seems the only hope, if the result were false then there would
be a TM that “solves the halting problem”. Perhaps we can do some
engineering with it.

A detour via Russell’s paradox

To give a hint of the type of thing we want to do consider Russell’s paradox.

> Let) be the set of all sets and define:
B={zeQ: zdux},

the set of all sets that are not members of themselves.
> Is B e B?

» Self-reference (e.g. x ¢ x) creates problems —and a TM which analyses other
TM’s could also analyse (a representation of) itself . . .

Can we build a halting machine?

» For the sake of contradiction suppose that a TM H (a halting machine)
decides HALT.
» Remember, this means that H halts on all inputs and accepts only and all
inputs of the form R(M)#w where:
> R(M) is the representation of a TM, and
> we Xk,
» M halts on w.

R(M)#w 7 —> M halts on w

—> other

A diagonalisation argument

R(M,;
T Ry ROG) RO ROM)
M, accepts,. reject reject accept
Mo reject " rejechy, accept reject
Ms reject reject - accept,, accept

My accept accept accept rejéct

Construct machine D such that the outcome of D(RM (D)) causes a contradiction
if it appears as any element of the diagonal.

Alternative step-by-step approach: From H to AH

» From this, we can construct an anti-halting machine AH which, on input of the
form R(M)#w behaves as follows:
» First H is run on the input.
» If H halts and rejects, i.e., M would loop on w, AH halts (and accepts)
> If H halts and accepts, i.e., M would halt on w, AH enters an infinite loop.

From AH to D

» Now we introduce the self-reference.
» Define the machine D that does the following on input R(M) (note, no w):

> |t writes a copy of R(M) on the tape, so the tape is now R(M)#R(M).
> It rewinds the read-write head to the left-hand end of the (modified) tape.
> |truns AH.

What does D do?

> It tells us something about the behaviour of programs given their own source
code as input.

» For any TM, M, if M would halt on input R(M) then D loops on input R(M).
» For any TM, M, if M would loop on input R(M) then D halts on input R(M).
» Well, D is a TM, so, “What would D do on input R(D)?”

» Oh dear.

What does it all mean?

» From the assumption that HALT was recursive we obtained a
paradox/contradiction.

» So HALT is not recursive.

» But, we know HALT is recursively enumerable, since it's the language
accepted by the universal TM.

» Therefore its complement is not even recursively enumerable.

Turing reducibility

» Carrying out this sort of diagonal argument from scratch is a pain.

» Can we build a tool that allows us to conclude that some languages are not
recursive directly?

» Yes - the notion of Turing reducibility

> “If there is a mechanical procedure for converting all instances of a known
undecidable problem into instances the problem we'’re trying to solve
(maintaining their positive or negative status), then our problem must be
undecidable.”

Turing reducibility, the details

Given two languages L and K (or their associated decision problems), we say that
L is Turing reducible to K, and write L AN K, if there is a TM, M which always
halts, and on input w leaves some other word r(w) on the tape in such a way that:

we L ifandonlyif r(w)e K.

If L is an undecidable (i.e., non-recursive) language and L — K, then K must
also be undecidable.

Otherwise we could run the reduction, and then apply the decision procedure for
K. So, one way to show that K is undecidable is to show that HALT — K.

BLANK-HALT (example for reducibility)

BLANK-HALT = {R(M) | M halts on a blank input tape}.

HALT % BLANK-HALT

The reducing machine, given an instance R(M)#w of HALT, creates (the
representation of) a TM, M’ whose behaviour is:

» Write w on a blank input tape
» Run M onw

The machine M’ halts on blank input if and only if R(M) halts on w. Therefore, if
we could decide BLANK-HALT then we could also decide HALT. But we can't.

Rice’s theorem

“All non-trivial semantic properties of programs are undecidable” [Wikipedia]

Theorem

Let C be a set of recursively enumerable languages that is non-trivial (neither i nor the set of all RE
languages). The set of Turing machines that accept some language in C, written

Le ={R(M) : L(M) € C} is undecidable.

>
>
>

vVVvyy

Consider some non-trivial C and assume that L¢ is decidable.
Assume the empty language 0 is not in C (if not, work with £ instead).
Choose some machine I whose language, L(I), belongs to C. This is possible because C is
non-empty and contains RE languages.
We produce a new Turing machine M., that takes an input R(M)#w and operates as follows:
» On any input z it first simulates M running on w.
> If this halts, it then runs I on =x.
If M halts on w, then M,, behaves like I, so L(M,) = L(I) € C and therefore R(M.,) € Lc.
If M does not halt on w, then L(M,,) = 0 ¢ C (assumption above) so R(M.,) & Lc.
Thus, R(M)#w € HALT if and only if R(M.,) € Lec.

We assumed that L is decidable, which would mean that the halting problem is
decidable—but we know it is not. Contradiction!

Modified from https:/theory.stanford.edu/ trevisan/cs154-12/noterice.pdf 13

https://theory.stanford.edu/~trevisan/cs154-12/noterice.pdf

Examples of undecidable semantic properties of programs

Does a given TM:
» Accept a regular language?
» Accept a finite number of inputs?
» Accept only representations of prime numbers?
» Perform the same computation as another specified TM?

From https://theory.stanford.edu/ trevisan/cs154-12/noterice.pdf and Wikipedia.

https://theory.stanford.edu/~trevisan/cs154-12/noterice.pdf

