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The halting problem: is HALT recursive?

Theorem

The halting language:

HALT = {R(M)#w : M halts on w}

is not recursive.

▶ Where to begin in proving a negative like this?
▶ Contradiction seems the only hope, if the result were false then there would

be a TM that “solves the halting problem”. Perhaps we can do some
engineering with it.
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A detour via Russell’s paradox

To give a hint of the type of thing we want to do consider Russell’s paradox.

▶ Let Ω be the set of all sets and define:

B = {x ∈ Ω : x ̸∈ x},

the set of all sets that are not members of themselves.
▶ Is B ∈ B?
▶ Self-reference (e.g. x ̸∈ x) creates problems – and a TM which analyses other

TM’s could also analyse (a representation of) itself . . .
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Can we build a halting machine?

▶ For the sake of contradiction suppose that a TM H (a halting machine)
decides HALT.

▶ Remember, this means that H halts on all inputs and accepts only and all
inputs of the form R(M)#w where:
▶ R(M) is the representation of a TM, and
▶ w ∈ Σ∗,
▶ M halts on w.

HR(M)#w
M halts on w

other
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A diagonalisation argument

Mi

R(Mj) R(M1) R(M2) R(M3) R(M4) · · ·

M1 accept reject reject accept · · ·
M2 reject reject accept reject · · ·
M3 reject reject accept accept · · ·
M4 accept accept accept reject · · ·

...
...

...
...

...
. . .

Construct machine D such that the outcome of D(RM(D)) causes a contradiction
if it appears as any element of the diagonal.
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Alternative step-by-step approach: From H to AH

▶ From this, we can construct an anti-halting machine AH which, on input of the
form R(M)#w behaves as follows:
▶ First H is run on the input.
▶ If H halts and rejects, i.e., M would loop on w, AH halts (and accepts)
▶ If H halts and accepts, i.e., M would halt on w, AH enters an infinite loop.
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From AH to D

▶ Now we introduce the self-reference.
▶ Define the machine D that does the following on input R(M) (note, no w):

▶ It writes a copy of R(M) on the tape, so the tape is now R(M)#R(M).
▶ It rewinds the read-write head to the left-hand end of the (modified) tape.
▶ It runs AH.
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What does D do?

▶ It tells us something about the behaviour of programs given their own source
code as input.

▶ For any TM, M , if M would halt on input R(M) then D loops on input R(M).
▶ For any TM, M , if M would loop on input R(M) then D halts on input R(M).
▶ Well, D is a TM, so, “What would D do on input R(D)?”
▶ Oh dear.
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What does it all mean?

▶ From the assumption that HALT was recursive we obtained a
paradox/contradiction.

▶ So HALT is not recursive.
▶ But, we know HALT is recursively enumerable, since it’s the language

accepted by the universal TM.
▶ Therefore its complement is not even recursively enumerable.
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Turing reducibility

▶ Carrying out this sort of diagonal argument from scratch is a pain.
▶ Can we build a tool that allows us to conclude that some languages are not

recursive directly?
▶ Yes - the notion of Turing reducibility
▶ “If there is a mechanical procedure for converting all instances of a known

undecidable problem into instances the problem we’re trying to solve
(maintaining their positive or negative status), then our problem must be
undecidable.”
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Turing reducibility, the details

Given two languages L and K (or their associated decision problems), we say that
L is Turing reducible to K, and write L

TR−→ K, if there is a TM, M which always
halts, and on input w leaves some other word r(w) on the tape in such a way that:

w ∈ L if and only if r(w) ∈ K.

If L is an undecidable (i.e., non-recursive) language and L
TR−→ K, then K must

also be undecidable.

Otherwise we could run the reduction, and then apply the decision procedure for
K. So, one way to show that K is undecidable is to show that HALT

TR−→ K.
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BLANK-HALT (example for reducibility)

BLANK-HALT = {R(M) |M halts on a blank input tape}.

HALT
TR−→ BLANK-HALT

The reducing machine, given an instance R(M)#w of HALT, creates (the
representation of) a TM, M ′ whose behaviour is:
▶ Write w on a blank input tape
▶ Run M on w

The machine M ′ halts on blank input if and only if R(M) halts on w. Therefore, if
we could decide BLANK-HALT then we could also decide HALT. But we can’t.
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Rice’s theorem
“All non-trivial semantic properties of programs are undecidable” [Wikipedia]

Theorem
Let C be a set of recursively enumerable languages that is non-trivial (neither ∅ nor the set of all RE
languages). The set of Turing machines that accept some language in C, written
LC = {R(M) : L(M) ∈ C} is undecidable.

▶ Consider some non-trivial C and assume that LC is decidable.
▶ Assume the empty language ∅ is not in C (if not, work with LC̄ instead).
▶ Choose some machine I whose language, L(I), belongs to C. This is possible because C is

non-empty and contains RE languages.
▶ We produce a new Turing machine Mw that takes an input R(M)#w and operates as follows:

▶ On any input x it first simulates M running on w.
▶ If this halts, it then runs I on x.

▶ If M halts on w, then Mw behaves like I, so L(Mw) = L(I) ∈ C and therefore R(Mw) ∈ LC .
▶ If M does not halt on w, then L(Mw) = ∅ ̸∈ C (assumption above) so R(Mw) ̸∈ LC .
▶ Thus, R(M)#w ∈ HALT if and only if R(Mw) ∈ LC .
▶ We assumed that LC is decidable, which would mean that the halting problem is

decidable—but we know it is not. Contradiction!
Modified from https://theory.stanford.edu/ trevisan/cs154-12/noterice.pdf 13
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Examples of undecidable semantic properties of programs

Does a given TM:
▶ Accept a regular language?
▶ Accept a finite number of inputs?
▶ Accept only representations of prime numbers?
▶ Perform the same computation as another specified TM?

From https://theory.stanford.edu/ trevisan/cs154-12/noterice.pdf and Wikipedia.
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