COSC 341 Theory of Computing Lecture 15 When will it stop?

Stephen Cranefield stephen.cranefield@otago.ac.nz

Lecture slides (mostly) by Michael Albert *Keywords*: Halting problem, Turing reduction

1

The halting problem: is HALT recursive?

Theorem

The halting language:

 $\mathsf{HALT} = \{ R(M) \# w : M \text{ halts on } w \}$

is **not** recursive.

- Where to begin in proving a negative like this?
- Contradiction seems the only hope, if the result were false then there would be a TM that "solves the halting problem". Perhaps we can do some engineering with it.

A detour via Russell's paradox

To give a hint of the type of thing we want to do consider **Russell's paradox**.

• Let Ω be the set of all sets and define:

 $B = \{ x \in \Omega \, : \, x \notin x \},\$

the set of all sets that are not members of themselves.

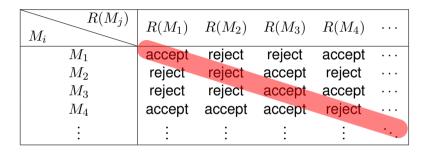
- ► Is B ∈ B?
- Self-reference (e.g. x ∉ x) creates problems and a TM which analyses other TM's could also analyse (a representation of) itself . . .

Can we build a halting machine?

- For the sake of contradiction suppose that a TM H (a <u>halting machine</u>) decides HALT.
- Remember, this means that *H* halts on all inputs and accepts *only and all* inputs of the form R(M) # w where:
 - R(M) is the representation of a TM, and
 - $\blacktriangleright \ w \in \Sigma^*,$
 - \blacktriangleright M halts on w.

$$R(M) # w \longrightarrow H \longrightarrow M$$
 halts on w
 \longrightarrow other

A diagonalisation argument



Construct machine D such that the outcome of D(RM(D)) causes a contradiction if it appears as any element of the diagonal.

Alternative step-by-step approach: From H to AH

- ► From this, we can construct an <u>anti-halting machine</u> AH which, on input of the form R(M)#w behaves as follows:
 - First *H* is run on the input.
 - lf H halts and rejects, i.e., M would loop on w, AH halts (and accepts)
 - If H halts and accepts, i.e., M would halt on w, AH enters an infinite loop.

From AH to D

- Now we introduce the self-reference.
- Define the machine D that does the following on input R(M) (note, no w):
 - lt writes a copy of R(M) on the tape, so the tape is now R(M) # R(M).
 - It rewinds the read-write head to the left-hand end of the (modified) tape.
 - It runs AH.

- It tells us something about the behaviour of programs given their own source code as input.
- For any TM, M, if M would halt on input R(M) then D loops on input R(M).
- For any TM, M, if M would loop on input R(M) then D halts on input R(M).
- Well, D is a TM, so, "What would D do on input R(D)?"
- Oh dear.

- From the assumption that HALT was recursive we obtained a paradox/contradiction.
- So HALT is not recursive.
- But, we know HALT is recursively enumerable, since it's the language accepted by the universal TM.
- > Therefore its complement is not even recursively enumerable.

Turing reducibility

- Carrying out this sort of diagonal argument from scratch is a pain.
- Can we build a tool that allows us to conclude that some languages are not recursive directly?
- Yes the notion of <u>Turing reducibility</u>
- "If there is a mechanical procedure for converting all instances of a known undecidable problem into instances the problem we're trying to solve (maintaining their positive or negative status), then our problem must be undecidable."

Turing reducibility, the details

Given two languages L and K (or their associated decision problems), we say that L is <u>Turing reducible</u> to K, and write $L \xrightarrow{TR} K$, if there is a TM, M which always halts, and on input w leaves some other word r(w) on the tape in such a way that:

 $w \in L$ if and only if $r(w) \in K$.

If L is an undecidable (i.e., non-recursive) language and $L \xrightarrow{TR} K$, then K must also be undecidable.

Otherwise we could run the reduction, and then apply the decision procedure for K. So, one way to show that K is undecidable is to show that HALT $\xrightarrow{TR} K$.

BLANK-HALT (example for reducibility)

BLANK-HALT = $\{R(M) \mid M \text{ halts on a blank input tape}\}.$

 $\mathsf{Halt} \overset{^{TR}}{\longrightarrow} \mathsf{Blank}\text{-}\mathsf{Halt}$

The reducing machine, given an instance R(M) # w of HALT, creates (the representation of) a TM, M' whose behaviour is:

- \blacktriangleright Write w on a blank input tape
- $\blacktriangleright \operatorname{Run} M \operatorname{on} w$

The machine M' halts on blank input if and only if R(M) halts on w. Therefore, if we could decide BLANK-HALT then we could also decide HALT. But we can't.

Rice's theorem

"All non-trivial semantic properties of programs are undecidable" [Wikipedia] Theorem

Let C be a set of recursively enumerable languages that is non-trivial (neither \emptyset nor the set of all RE languages). The set of Turing machines that accept some language in C, written $\mathcal{L}_{C} = \{R(M) : L(M) \in C\}$ is undecidable.

- Consider some non-trivial C and assume that \mathcal{L}_C is decidable.
- Assume the empty language \emptyset is not in C (if not, work with $\mathcal{L}_{\bar{C}}$ instead).
- Choose some machine I whose language, L(I), belongs to C. This is possible because C is non-empty and contains RE languages.
- We produce a new Turing machine M_w that takes an input R(M) # w and operates as follows:
 - On any input x it first simulates M running on w.
 - lf this halts, it then runs I on x.
- ▶ If *M* halts on *w*, then M_w behaves like *I*, so $L(M_w) = L(I) \in C$ and therefore $R(M_w) \in \mathcal{L}_C$.
- ▶ If *M* does not halt on *w*, then $L(M_w) = \emptyset \notin C$ (assumption above) so $R(M_w) \notin \mathcal{L}_C$.
- ▶ Thus, $R(M) # w \in \mathsf{HALT}$ if and only if $R(M_w) \in \mathcal{L}_{\mathcal{C}}$.
- We assumed that L_c is decidable, which would mean that the halting problem is decidable—but we know it is not. Contradiction!

Examples of undecidable semantic properties of programs

Does a given TM:

- Accept a regular language?
- Accept a finite number of inputs?
- Accept only representations of prime numbers?
- Perform the same computation as another specified TM?

From https://theory.stanford.edu/ trevisan/cs154-12/noterice.pdf and Wikipedia.