
COSC 341
Theory of Computing

Lecture 16
How long will it take?

Stephen Cranefield
stephen.cranefield@otago.ac.nz

1

Lecture slides (mostly) by Michael Albert

Keywords: Time complexity

mailto:stephen.cranefield@otago.ac.nz


Time-complexity of Turing machines

▶ From now on a standing assumption is that the Turing machines we’re
considering halt on all inputs.

▶ The time required for a transition will be called a tick (all transitions are
assumed to require the same length of time).

▶ This allows us to define the time complexity of M to be the function:

tcM : N → N

where tcM (n) is the maximum number of ticks required for the operation of M
on any input string of length n.

2



Does hardware matter?

▶ How does the type of TM we’re using affect the time-complexity?
▶ What does that mean exactly?
▶ It’s a bit fuzzy but we have a feeling for what it means for two different TMs

(say standard and multi-tape) to be implementing the “same” algorithm.
▶ The underlying hardware can make it easier to do things – for example to

recognise SQUARE we saw that a two-tape machine might require only linear
time, while a standard TM seems to need quadratic time.

▶ What has been observed again and again is this: the extra overhead required
to simulate one model of deterministic computation in another is always a
polynomial in the size of the input.

3



Edmonds and Cobham (1964/5)
Edmonds:

An explanation is due on the use of the words “efficient algorithm” . . . For
practical purposes the difference between algebraic and exponential or-
der is more crucial than the difference between [computable and not com-
putable] . . . It would be unfortunate for any rigid criterion to inhibit the prac-
tical development of algorithms which are either not known or known not
to conform nicely to the criterion.

Cobham:
For several reasons the class P seems a natural one to consider. For
one thing, if we formalize the definition relative to various general classes
of computing machines we seem always to end up with the same well-
defined class of functions. Thus we can give a mathematical characteriza-
tion of P having some confidence it characterizes correctly our informally
defined class.

4



The complexity class P

We say that a decision problem PROB ∈ P if PROB can be resolved by a
deterministic Turing machine M with

tcM (n) = O(nc)

for some constant c.

P is the class of decision problems that can be resolved by a deterministic
Turing machine whose running time is bounded by a polynomial in the
input size.

Briefly, a problem in P can be solved “in (deterministic) polynomial time”.

5



Decision problems and languages

What do decision problems have to do with languages
(and therefore Turing machines)?

▶ A decision problem corresponds to a subset X of Σ∗.
▶ The problem is to decide, given w, whether w ∈ X.

What about problems that involve constructing an answer?

For complexity analysis we can generally consider these as a combination of a
decision algorithm and binary search.

6



The class NP

▶ What happens if we allow non-determinism?
▶ Effectively, this allows a guess and check approach to our problems.
▶ For this reason, non-deterministic machines that solve decision problems are

frequently called verifiers.
▶ The time-complexity of such a machine is the run-time of its deterministic part

(i.e., after the guess has been entered) maximised over all inputs of a given
length (but minimised over correct guesses for any given input – though this is
rarely relevant)

NP is the class of decision problems that can be resolved by a non-
deterministic Turing machine whose running time is bounded by a poly-
nomial in the input size.

Note that P ⊆ NP: a problem in P can be ‘verified’ by just deciding it again.

Whether P = NP is a hugely significant open problem.
7



Example problem in NP

FAIR-DIVISION

▶ Instance: A sequence a1, a2, . . . , an of positive integers.
▶ Problem: Find a partition of the sequence into two parts with equal sums.

Note: If we represent the ai in unary notation, e.g. 111#11#111111#111#1111,
this is in P.

However, in time complexity problems, by convention, integers should be
represented in a base > 1 (typically binary). The input size for FAIR-DIVISION is
then n log(max{ai}).

If we want to look at all of the 2n possible divisions, we won’t have a polynomial
algorithm.

However, if a helpful genie tells us a correct division, we can easily verify it in
polynomial time: we just need to add up the two groups.

8


