
COSC 341
Theory of Computing

Lecture 17
Polynomial reductions, and NP-hardness

Stephen Cranefield
stephen.cranefield@otago.ac.nz

1

Lecture slides (mostly) by Michael Albert

Keywords: Polynomial reduction, graph theory,
NP-hard, NP-complete

mailto:stephen.cranefield@otago.ac.nz


Time complexity revision
▶ The time complexity of a Turing machine is the maximum amount of time (in

‘ticks’: transitions made) that it will run for on input of size n.
▶ We assume we are working with TMs that always halt.
▶ A decision problem is in complexity class P if there is some deterministic TM

that decides the problem and has time-complexity bounded by a polynomial in
n.

▶ (New information) Basic arithmetic operations are in P (if represented in base
2 or higher).

▶ A decision problem is in NP if some non-deterministic TM can decide it and
has time-complexity bounded by a polynomial in n.

▶ Example NP problem: FAIR-DIVISION
▶ Given a sequence a1, a2, . . . , an of positive integers, does there exist a partition

of it into two sequences of equal sum.
▶ A genie can write a sequence of binary hints h1, h2 . . . hn indicating which

partition each ai is in. This can be verified in polynomial time.

2



Reductions revisited

▶ A reduction from one decision problem, say A, to another, B is a procedure
that converts instances of A to instances of B that preserves their status.

▶ Strictly speaking this is called a many-one reduction or Karp-reduction.
▶ The idea is that the reduction should be “easy”. If so, we can infer:

▶ If solving B is easy, then so is solving A.
▶ If solving A is hard, then so is solving B.

▶ We’re usually interested in proving that problems are hard so we need:
▶ A source problem that’s known to be hard.
▶ A reduction from it to our problem.

3



Polynomial-time reductions

A polynomial-time reduction of A to B is a deterministic algorithm, i.e. TM, for
converting instances of A to instances of B such that:
▶ the time required for the conversion is bounded by a polynomial (in the input

size), and
▶ all positive instances of A are converted to positive instances of B, and
▶ all negative instances of A are converted to negative instances of B.

Theorem
If B is in P(respectively, NP) and A has a polynomial-time reduction to B then A
is in P(respectively, NP).

There’s a little more to this than meets the eye, which is one of the reasons why P
is considered a robust definition of problems that have efficient solutions.

4



Graph theory overview and example problems

▶ See Notes 15 and the lecture recording.
▶ We don’t need any more knowledge of graphs than is covered in COSC201.

5



NP-hard

▶ Suppose we could find some problem REALLYHARD which had the property
that for every problem, PROB in NP there was a polynomial-time reduction
from PROB to REALLYHARD.

▶ That says REALLYHARD is a really hard problem, since solving it would allow
us to solve any problem in NP with additional polyomial overhead.

▶ Such problems are called NP-hard.
▶ If, in addition, they happen to belong to NP, then they’re NP-complete.

Question: Do such problems exist?

Answer: YES! And much more – many natural problems in optimisation and
search are NP-complete. For example, FAIR-DIVISION, HAMILTON-CYCLE, and
3-COLOURING are such problems.

6



Example reduction: INDEPENDENT-SET to CLIQUE

Given an instance (G, k) of INDEPENDENT-SET:
1. Construct a new graph (the complement of G), Gc where v and w are

adjacent in Gc if and only if they were not adjacent in G.
2. Any independent set in G is a clique in Gc and vice versa, so the status of

(G, k) for INDEPENDENT-SET is the same as that of (Gc, k) for CLIQUE.
3. Algorithm:

// copy nodes ...
// print edges
for v from 1 to n
for w from v+1 to n
if {v,w} is an edge of G continue
print(v + w + ’#’)

7



Example reduction: 4-COLOURING to 5-COLOURING

Given an instance G of 4-COLOURING:
▶ Construct a new graph G+1 which has one new vertex that is adjacent to all

the vertices of G.

▶ If G is positive for 4-COLOURING then G+1 is positive for 5-COLOURING

(4-colour G and use the 5th colour for the new vertex).
▶ If G is negative for 4-COLOURING then G+1 is negative for 5-COLOURING

(because a 5-colouring of G+1 induces a 4-colouring of G).

Image modified from https://math.stackexchange.com/q/3244093.
Author: gamma. Licence: CC BY-SA 4.0.

8

https://math.stackexchange.com/q/3244093
https://creativecommons.org/licenses/by-sa/4.0/


Example reduction: HAMILTON-CYCLE to HAMILTON-PATH
See Notes 15. Discussed in Tutorial 17.

▶ Choose any node (a in the diagram) as the starting node for the path.
▶ Add the yellow nodes (x, y and z). x is adjacent to a, y is adjacent to the

neighbours of a, and z is adjacent to y.
▶ A Hamilton path exists in the new graph if and only if there is a Hamilton cycle

in the original graph.
9


