COSC 341
Theory of Computing
Lecture 18
Propositional logic and satisfiability

Stephen Cranefield
stephen.cranefield@otago.ac.nz

Lecture slides (mostly) by Michael Albert

Keywords: Propositional logic, satisfiability

mailto:stephen.cranefield@otago.ac.nz

Aim: to find our first NP-complete problem

» Finding our first NP-complete problem is daunting as we must be able to
reduce all problems in NP to it.

» But once we find our first such problem prob then any problem we can reduce
prob to is also NP-complete.

» Gradually we can build up a catalogue of NP-complete problems.

» Spoiler: that first NP-complete problem is going to be satisfiabilty in
propositional logic.

Overview of propositional logic (1)

» VAR is a finite (but large) set of Boolean variable symbols.

> A and V are binary operators and — is a unary operator.

» We define a context-free grammar of logical formulas over the variables:
E—-V
EFE—-FEANE
EFE—-FEVE
EF — -F
V — v (forany v € VAR)

» What does a A bV c mean?

» Oops! It is ambiguous. We need to add brackets as non-terminals in our
grammar:
E— (V)
E— (E)N(FE)

Overview of propositional logic (2)

» A truth assignmentis amap 7' : VAR — {t,f}.
» Given a truth assignment, we define the evaluation of a formula recursively:

ev(v,T) =T(v)
ev(—(E),T) =!ev(E,T) wherelt=fand!f =t

t ifbothev(E;,T)and ev(E»,T) are t
f otherwise

f if both ev(E;,T) and ev(Ey,T') are f
t otherwise

ev((Ev) A (En),T) = {

ev((Eq) V (Eq),T) = {

» Two formulas are logically equivalent if they have the same evaluation for
every truth assignment, e.g. a A (b ¢) and (a A b) V (a A c).

Conjunctive normal form and satisfiability

>

>

>

>

A literal (in logic) is a atomic formula or its negation. In propositional logic, the atoms are
variables, so the literals are variables and negated variables.

A clause is a disjunction of literals, e.g.:

xo VeV g

A formula in conjunctive normal form (CNF) is a conjunction of clauses, e.g.:

(xo Va2 V—xe) A (x1 V23V aaV —me)A(z1VasVas) A (zoV —zr)

A formula is satisfiable if it evaluates to t for some truth assignment 7'. T is called a
satisfying assignment.

The satisfiability problem (slide 8) can take a formula in CNF because:

Theorem
Every formula in propositional logic is logically equivalent to one in CNF.

Proof.

>
>
>

Construct the truth table for £
For each row with value f create a clause denying that truth assignment.
Take the conjunction of those clauses.

Proof illustration
Consider (g A—=p A=r) V (p AT).

plagl|lr|(gAn—-pA-r)V(pAr) | Created clause
flff f pNVqVr
flf|t f pVqV-r
flt]|f t

flt|t f pV gV -r
t|f|f f pVqVr
t|f |t t

t|t|f f “pV-qVr
t|t|t t

CNF: (pVagVr)A(pVagV—r)A(pV—-qV-r)A(=pVqgVr)A(—pV-qVr)

From https://math.stackexchange.com/questions/3549712/how-to-compute-cnf-from-truth-table

https://math.stackexchange.com/questions/3549712/how-to-compute-cnf-from-truth-table

(Potential) exponential blow-up
Consider the formula (z1 A y1) V (2 Ay2) V ooo. V (T A yp)-

» This has size linear in n (ignoring the log n factor for storing variable names).
» Converting this to CNF produces a formula with 2™ clauses:

(x1VaaV...Vay,)
ANyrVaa V...V,
AN(x1VyaV...Vxy)
ANy1Vya V...V,

ANyiVyaV...Vyy)

» Each clause contains either x; or y; (or its negation) for each 1.
» Can we do better? By counting the number of falsifying assignments needed
we can show that there must be at least (1.5)™ clauses.

Satisfiability

Satisfiability or SAT
Instance: A formula in CNF over a set of variables V.

Problem: Does the formula have a satisfying assignment?

» The space requirement to describe an instance of SAT containing k clauses
over n variables is O(knlogn) (see Notes 16).

» The non-deterministic “guess and check” procedure to verify an instance
requires time at most quadratic in the size of the input (see Notes 16).

» So SATisin NP.

What makes formulas in CNF easy or hard to satisfy?

vvyyy

v

A clause with k variables has 2* truth assignment over those variables.
How many of these truth assignments make the clause false?
Only 1. Clauses are hard to falsify. Each disjunct must be false.

Adding more variables to a clause makes it even harder to falsify / easier to
satisfy.

Adding more clauses to a formula in CNF adds more falsifying truth
assignments.

The greater the number of clauses in a formula in CNF and the shorter those
clauses, the more likely the formula is to be unsatisfiable.

SAT is NP-complete (trailer)

How can we possibly reduce every NP problem to SAT?

Let a TM, M solve some problem in NP (in polynomial time). As it runs we could
imagine taking a snapshot of its configuration at each time step.

» Describing such a snapshot using Boolean variables is pretty straightforward.

> But:
» How do we ensure the the snapshots change correctly from one time step to the
next?
» How do we limit the size given that the TM has an infinite tape?
» How do we create a formula that is satisfied exactly when M accepts its input?

