
COSC 341
Theory of Computing

Lecture 18
Propositional logic and satisfiability

Stephen Cranefield
stephen.cranefield@otago.ac.nz

1

Lecture slides (mostly) by Michael Albert

Keywords: Propositional logic, satisfiability

mailto:stephen.cranefield@otago.ac.nz

Aim: to find our first NP-complete problem

▶ Finding our first NP-complete problem is daunting as we must be able to
reduce all problems in NP to it.

▶ But once we find our first such problem prob then any problem we can reduce
prob to is also NP-complete.

▶ Gradually we can build up a catalogue of NP-complete problems.
▶ Spoiler: that first NP-complete problem is going to be satisfiabilty in

propositional logic.

2

Overview of propositional logic (1)
▶ VAR is a finite (but large) set of Boolean variable symbols.
▶ ∧ and ∨ are binary operators and ¬ is a unary operator.
▶ We define a context-free grammar of logical formulas over the variables:

E → V

E → E ∧ E

E → E ∨ E

E → ¬E
V → v (for any v ∈ VAR)

▶ What does a ∧ b ∨ c mean?
▶ Oops! It is ambiguous. We need to add brackets as non-terminals in our

grammar:

E → (V)

E → (E) ∧ (E)

. . .
3

Overview of propositional logic (2)

▶ A truth assignment is a map T : VAR → {t, f}.
▶ Given a truth assignment, we define the evaluation of a formula recursively:

ev(v, T) = T (v)

ev(¬(E), T) = ! ev(E, T) where !t = f and !f = t

ev((E1) ∧ (E2), T) =

{
t if both ev(E1, T) and ev(E2, T) are t

f otherwise

ev((E1) ∨ (E2), T) =

{
f if both ev(E1, T) and ev(E2, T) are f

t otherwise

▶ Two formulas are logically equivalent if they have the same evaluation for
every truth assignment, e.g. a ∧ (b ∨ c) and (a ∧ b) ∨ (a ∧ c).

4

Conjunctive normal form and satisfiability
▶ A literal (in logic) is a atomic formula or its negation. In propositional logic, the atoms are

variables, so the literals are variables and negated variables.
▶ A clause is a disjunction of literals, e.g.:

x0 ∨ x2 ∨ ¬x6

▶ A formula in conjunctive normal form (CNF) is a conjunction of clauses, e.g.:

(x0 ∨ x2 ∨ ¬x6) ∧ (x1 ∨ ¬x3 ∨ x4 ∨ ¬x6) ∧ (x1 ∨ x3 ∨ x5) ∧ (x0 ∨ ¬x7)

▶ A formula is satisfiable if it evaluates to t for some truth assignment T . T is called a
satisfying assignment.

▶ The satisfiability problem (slide 8) can take a formula in CNF because:

Theorem
Every formula in propositional logic is logically equivalent to one in CNF.

Proof.
▶ Construct the truth table for E
▶ For each row with value f create a clause denying that truth assignment.
▶ Take the conjunction of those clauses.

5

Proof illustration
Consider (q ∧ ¬p ∧ ¬r) ∨ (p ∧ r).

p q r (q ∧ ¬p ∧ ¬r) ∨ (p ∧ r) Created clause
f f f f p ∨ q ∨ r

f f t f p ∨ q ∨ ¬r
f t f t

f t t f p ∨ ¬q ∨ ¬r
t f f f ¬p ∨ q ∨ r

t f t t

t t f f ¬p ∨ ¬q ∨ r

t t t t

CNF: (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬r) ∧ (¬p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ r)

From https://math.stackexchange.com/questions/3549712/how-to-compute-cnf-from-truth-table

6

https://math.stackexchange.com/questions/3549712/how-to-compute-cnf-from-truth-table

(Potential) exponential blow-up
Consider the formula (x1 ∧ y1) ∨ (x2 ∧ y2) ∨ ∨ (xn ∧ yn).

▶ This has size linear in n (ignoring the log n factor for storing variable names).
▶ Converting this to CNF produces a formula with 2n clauses:

(x1 ∨ x2 ∨ . . . ∨ xn)

∧ (y1 ∨ x2 ∨ . . . ∨ xn)

∧ (x1 ∨ y2 ∨ . . . ∨ xn)

∧ (y1 ∨ y2 ∨ . . . ∨ xn)

. . .

∧ (y1 ∨ y2 ∨ . . . ∨ yn)

▶ Each clause contains either xi or yi (or its negation) for each i.
▶ Can we do better? By counting the number of falsifying assignments needed

we can show that there must be at least (1.5)n clauses.
7

Satisfiability

Satisfiability or SAT

Instance: A formula in CNF over a set of variables V .
Problem: Does the formula have a satisfying assignment?

▶ The space requirement to describe an instance of SAT containing k clauses
over n variables is O(kn log n) (see Notes 16).

▶ The non-deterministic “guess and check” procedure to verify an instance
requires time at most quadratic in the size of the input (see Notes 16).

▶ So SAT is in NP.

8

What makes formulas in CNF easy or hard to satisfy?

▶ A clause with k variables has 2k truth assignment over those variables.
▶ How many of these truth assignments make the clause false?
▶ Only 1. Clauses are hard to falsify. Each disjunct must be false.
▶ Adding more variables to a clause makes it even harder to falsify / easier to

satisfy.
▶ Adding more clauses to a formula in CNF adds more falsifying truth

assignments.
▶ The greater the number of clauses in a formula in CNF and the shorter those

clauses, the more likely the formula is to be unsatisfiable.

9

SAT is NP-complete (trailer)

How can we possibly reduce every NP problem to SAT?

Let a TM, M solve some problem in NP (in polynomial time). As it runs we could
imagine taking a snapshot of its configuration at each time step.
▶ Describing such a snapshot using Boolean variables is pretty straightforward.
▶ But:

▶ How do we ensure the the snapshots change correctly from one time step to the
next?

▶ How do we limit the size given that the TM has an infinite tape?
▶ How do we create a formula that is satisfied exactly when M accepts its input?

10

