
COSC 341
Theory of Computing

Lecture 20
Reductions from SAT (3-SATand INDEPENDENT-SET)

Stephen Cranefield
stephen.cranefield@otago.ac.nz

1

Keywords: k-SAT, 3-SAT

mailto:stephen.cranefield@otago.ac.nz

Satisfiability with bounded length clauses

As seen in the Cook-Levin theorem, a SAT instance can have very large clauses.
That makes it hard to see how we could reduce SAT to other problems to show
they are NP-complete.

It turns out that restricting ourselves to three literals in each clause still gives us an
NP-complete problem (3-SAT).

2

k-SAT

Instance: A formula in CNF over a set of variables V with exactly k distinct literals
in each clause.
Problem: Does the formula have a satisfying assignment?

Why “exactly k” rather than “at most k”? It doesn’t matter.

Suppose k = 3 and we want to write a clause with two variables, e.g. a ∨ ¬b. How
can we extend this to three literals without changing the meaning?

We can just introduce a new variable (not to be used anywhere else), e.g. c. We
can replace a ∨ ¬b with:

a ∨ ¬b ∨ c

a ∨ ¬b ∨ ¬c

3

What is the complexity of k-SAT?

Theorem
For k ≥ 3, k-SAT is NP-complete. For k < 3 it is in P.

This is easy to see for 1-SAT. A set of 1-variable clauses is unsatisfiable if and
only if some variable and its negation both occur.

Satisfiable

a

b

c

a

b

Unsatisfiable

a

b

c

¬a
b

This is easily resolved in polynomial time.

4

Proof for the case k = 2
We can reduce an instance of 2-SAT with n variables to one using n− 1 variables
in polynomial time. Repeat until there is only one variable (a simple case to solve).

Let CI denote the clauses in I. Consider the set:

P = {‘z’ : ‘xn ∨ z’ ∈ CI and z is xi or ¬xi for i < n}

(P means “positive for xn)

Suppose P contains both xi and ¬xi for some i. Then any satisfying assignment
must have xn = t. We can remove xn from each clause in P , giving us a set P ′ of
(n−1)-variable clauses. Our next iteration starts with (CI \ P) ∪ P ′.

Otherwise, try a similar approach with:

N = {‘z’ : ‘¬xn ∨ z’ ∈ CI and z is xi or ¬xi for i < n}

If that fails, . . .
5

Proof for the case k = 2 (continued)

If the previous two checks fail, Notes 18 shows that for I to be satisfiable, this
(n−1)-variable formula must be too:((∧

w∈N
w

) ∨ (∧
z∈P

z

)) ∨  ∧
clauses in CI not involving xn

C


This is not in CNF, but the first two parts can be converted to a conjunction of
|N ||P | clauses each of size 2 in the remaining variables, and the remaining has
size no larger than |I|.

Keep removing variables until we have only one variable left, which gives us only
two truth assignments to check.

6

Proof for the case k = 3 (3-SAT is NP-complete)

We reduce SAT to 3-SAT by replacing each ‘big’ clause:

l1 ∨ l2 ∨ · · · ∨ ln

(where n ≥ 4) with n− 2 clauses of size 3 that include new variables z3 to zn−1:

l1 ∨ l2 ∨ z3
¬z3 ∨ l3 ∨ z4
¬z4 ∨ l4 ∨ z5

· · ·
¬zn−2 ∨ ln−2 ∨ zn−1

¬zn−1 ∨ ln−1 ∨ ln.

7

Proof for the case k = 3 (3-SAT is NP-complete)

We reduce SAT to 3-SAT by replacing each ‘big’ clause:

l1 ∨ l2 ∨ · · · ∨ ln

(where n ≥ 4) with n− 2 clauses of size 3 that include new variables z3 to zn−1:

l1 ∨ l2 ∨ z3
¬z3 ∨ l3 ∨ z4
¬z4 ∨ l4 ∨ z5

· · ·
¬zn−2 ∨ ln−2 ∨ zn−1

¬zn−1 ∨ ln−1 ∨ ln.

If the original clause is unsatisfiable (all li are false) that forces z3 to zn−1 to be
true, but then the last clause will be false, so the 3-SAT instance is unsatisfiable.

7

Proof for the case k = 3 (3-SAT is NP-complete)
We reduce SAT to 3-SAT by replacing each ‘big’ clause:

l1 ∨ l2 ∨ · · · ∨ ln

(where n ≥ 4) with n− 2 clauses of size 3 that include new variables z3 to zn−1:

l1 ∨ l2 ∨ z3
¬z3 ∨ l3 ∨ z4
¬z4 ∨ l4 ∨ z5

· · ·
¬zn−2 ∨ ln−2 ∨ zn−1

¬zn−1 ∨ ln−1 ∨ ln.

If the original clause is satisfiable, at least one li is true. There are three cases for
showing the 3-SAT instance is satisfiable (see Notes 18). One case: 3 ≤ i ≤ n− 2,
e.g. i = 4. Set zj = t for j ≤ i and zj = f for j > i. This satisfies all the clauses.

7

Proof for the case k > 3

We can reduce 3-SAT to 4-SAT, 4-SAT to 5-SAT and so on. Just duplicate a literal
in each clause to produce the larger instance.

8

Some reductions from 3-SAT

Now we know that 3-SAT is NP-complete, it turns out to be quite handy as a
source of reductions to other problems.

Three examples in Notes 18:
▶ 3-SAT to INDEPENDENT-SET (covered today).
▶ 3-SAT to 3-COLOURING (next lecture).
▶ 3-SAT to HAMILTON-CYCLE (next lecture).

9

3-SAT to INDEPENDENT-SET

Reduction needed (in polynomial time):

INPUT: A set of clauses each containing exactly three literals
OUTPUT: A graph G and a parameter k such that the clauses are satisfiable if and only if G has a
k-element independent set.

▶ We can choose k to be the number of clauses in the 3-SAT instance.
▶ For each clause l1 ∨ l2 ∨ l3, include a triangle in G with node labels l clause_num

lit_num , giving a total of
3k vertices. Variables in no clauses will not appear in the graph.

▶ Then add an edge between each pair of vertices representing contradictory literals (i.e., a
variable and its negation). For any satisfying assignment, e.g. (x, y, z) = (f, t, t) below,
choosing one satisfied literal from each triangle gives a k-element independent set.

x ∨ y ∨ z
¬x ∨ ¬y ∨ z
¬x ∨ y ∨ ¬z

⇒ z13 x11

y12

¬x21 z23

¬y22

¬x31y32

¬z43

10

3-SAT to INDEPENDENT-SET (continued)

▶ Conversely, if the graph has a k-element independent set, it must include exactly one vertex
from each triangle. This must be a valid truth assignment as we can’t have both a variable and
its negation in an independent set (they are connected by edges). Any unassigned variables
can be given a arbitrary value. This gives us a truth assignment with one true literal per clause,
so the 3-SAT instance is satisfiable.

11

