COSC 341 Theory of Computing Lecture 20 Reductions from SAT (3-SATand INDEPENDENT-SET)

Stephen Cranefield stephen.cranefield@otago.ac.nz

1

Keywords: k-SAT, 3-SAT

Satisfiability with bounded length clauses

As seen in the Cook-Levin theorem, a SAT instance can have very large clauses. That makes it hard to see how we could reduce SAT to other problems to show they are **NP**-complete.

It turns out that restricting ourselves to three literals in each clause still gives us an NP-complete problem (3-SAT).

Instance: A formula in CNF over a set of variables V with exactly k distinct literals in each clause. *Problem*: Does the formula have a satisfying assignment?

Why "exactly k" rather than "at most k"? It doesn't matter.

Suppose k = 3 and we want to write a clause with two variables, e.g. $a \lor \neg b$. How can we extend this to three literals without changing the meaning?

We can just introduce a new variable (not to be used anywhere else), e.g. *c*. We can replace $a \lor \neg b$ with:

 $\begin{array}{l} a \lor \neg b \lor c \\ a \lor \neg b \lor \neg c \end{array}$

What is the complexity of k-SAT?

Theorem

For $k \ge 3$, k-SAT is NP-complete. For k < 3 it is in P.

This is easy to see for 1-SAT. A set of 1-variable clauses is unsatisfiable if and only if some variable and its negation both occur.

This is easily resolved in polynomial time.

Proof for the case k = 2

We can reduce an instance of 2-SAT with n variables to one using n - 1 variables in polynomial time. Repeat until there is only one variable (a simple case to solve).

Let C_I denote the clauses in I. Consider the set:

 $P = \{ z': x_n \lor z' \in C_I \text{ and } z \text{ is } x_i \text{ or } \neg x_i \text{ for } i < n \}$

(*P* means "positive for x_n)

Suppose P contains both x_i and $\neg x_i$ for some i. Then any satisfying assignment must have $x_n = t$. We can remove x_n from each clause in P, giving us a set P' of (n-1)-variable clauses. Our next iteration starts with $(C_I \setminus P) \cup P'$.

Otherwise, try a similar approach with:

$$N = \{ z': \neg x_n \lor z' \in C_I \text{ and } z \text{ is } x_i \text{ or } \neg x_i \text{ for } i < n \}$$

If that fails, ...

Proof for the case k = 2 (continued)

If the previous two checks fail, Notes 18 shows that for I to be satisfiable, this (n-1)-variable formula must be too:

$$\left(\left(\bigwedge_{w\in N} w\right) \bigvee \left(\bigwedge_{z\in P} z\right)\right) \bigvee \left(\bigwedge_{\text{clauses in } C_I \text{ not involving } x_n} C\right)$$

This is not in CNF, but the first two parts can be converted to a conjunction of |N||P| clauses each of size 2 in the remaining variables, and the remaining has size no larger than |I|.

Keep removing variables until we have only one variable left, which gives us only two truth assignments to check.

Proof for the case k = 3 (3-SAT is NP-complete)

We reduce SAT to 3-SAT by replacing each 'big' clause:

 $l_1 \vee l_2 \vee \cdots \vee l_n$

(where $n \ge 4$) with n - 2 clauses of size 3 that include new variables z_3 to z_{n-1} :

$$\begin{split} l_1 &\lor l_2 \lor z_3 \\ \neg z_3 \lor l_3 \lor z_4 \\ \neg z_4 \lor l_4 \lor z_5 \\ & \cdots \\ \neg z_{n-2} \lor l_{n-2} \lor z_{n-1} \\ \neg z_{n-1} \lor l_{n-1} \lor l_n. \end{split}$$

Proof for the case k = 3 (3-SAT is NP-complete)

We reduce SAT to 3-SAT by replacing each 'big' clause:

 $l_1 \vee l_2 \vee \cdots \vee l_n$

(where $n \ge 4$) with n-2 clauses of size 3 that include new variables z_3 to z_{n-1} :

 $l_1 \lor l_2 \lor z_3$ $\neg z_3 \lor l_3 \lor z_4$ $\neg z_4 \lor l_4 \lor z_5$ \dots $\neg z_{n-2} \lor l_{n-2} \lor z_{n-1}$ $\neg z_{n-1} \lor l_{n-1} \lor l_n.$

If the original clause is unsatisfiable (all l_i are false) that forces z_3 to z_{n-1} to be true, but then the last clause will be false, so the 3-SAT instance is unsatisfiable.

Proof for the case k = 3 (3-SAT is NP-complete)

We reduce SAT to 3-SAT by replacing each 'big' clause:

 $l_1 \vee l_2 \vee \cdots \vee l_n$

(where $n \ge 4$) with n-2 clauses of size 3 that include new variables z_3 to z_{n-1} :

 $l_1 \lor l_2 \lor z_3$ $\neg z_3 \lor l_3 \lor z_4$ $\neg z_4 \lor l_4 \lor z_5$ \dots $\neg z_{n-2} \lor l_{n-2} \lor z_{n-1}$ $\neg z_{n-1} \lor l_{n-1} \lor l_n.$

If the original clause is satisfiable, at least one l_i is true. There are three cases for showing the 3-SAT instance is satisfiable (see Notes 18). One case: $3 \le i \le n-2$, e.g. i = 4. Set $z_j = t$ for $j \le i$ and $z_j = f$ for j > i. This satisfies all the clauses.

We can reduce 3-SAT to 4-SAT, 4-SAT to 5-SAT and so on. Just duplicate a literal in each clause to produce the larger instance.

Now we know that 3-SAT is NP-complete, it turns out to be quite handy as a source of reductions to other problems.

Three examples in Notes 18:

- ► 3-SAT to INDEPENDENT-SET (covered today).
- ► 3-SAT to 3-COLOURING (next lecture).
- ► 3-SAT to HAMILTON-CYCLE (next lecture).

3-SAT tO INDEPENDENT-SET

Reduction needed (in polynomial time):

INPUT: A set of clauses each containing exactly three literals OUTPUT: A graph G and a parameter k such that the clauses are satisfiable if and only if G has a k-element independent set.

- ▶ We can choose *k* to be the number of clauses in the 3-SAT instance.
- For each clause $l_1 \vee l_2 \vee l_3$, include a triangle in *G* with node labels $l_{\text{lit_num}}^{\text{clause_num}}$, giving a total of 3k vertices. Variables in no clauses will not appear in the graph.
- ▶ Then add an edge between each pair of vertices representing contradictory literals (i.e., a variable and its negation). For any satisfying assignment, e.g. (x, y, z) = (f, t, t) below, choosing one satisfied literal from each triangle gives a *k*-element independent set.

3-SAT to INDEPENDENT-SET (continued)

Conversely, if the graph has a k-element independent set, it must include exactly one vertex from each triangle. This must be a valid truth assignment as we can't have both a variable and its negation in an independent set (they are connected by edges). Any unassigned variables can be given a arbitrary value. This gives us a truth assignment with one true literal per clause, so the 3-SAT instance is satisfiable.