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3-SAT to 3-COLOURING

Step 1: Define a “core” graph, in which each 3-colouring corresponds to a unique truth assignment
for the 3-SAT instance. If there are k variables, we create k + 1 triangles in the graph, sharing a
common “base” vertex. One triangle has its other two vertices labelled t and f.

Example for the 3-variable case (the 3-colouring corresponds to x = t, y = t and z = f):
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3-SAT to 3-COLOURING (continued)

Step 2: Add “gadgets”. For each clause a∨ b∨ c in the 3-SAT instance (where a, b and c are literals),
interconnect the vertices for these literals and t in the core graph as shown below:

All literals false. Impossible to 3-colour
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Some literals true. A 3-colouring exists.
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3-SAT to HAMILTON-CYCLE
It is convenient to do this in two steps:

▶ First reduce 3-SAT to DIRECTED-HAMILTON-CYCLE
(determining whether a directed graph has a Hamilton cycle).

▶ Then reduce DIRECTED-HAMILTON-CYCLE to HAMILTON-CYCLE.

We will show the second step first. Given a directed graph Gd, we construct an undirected graph
Gu. Each vertex v in Gd is replaced by three vertices in Gu: vi, v and vo (the “i” and “o” mean “in”
and “ out). We add edges (vi, v) and (v, vo). An edge (v, w) in Gd becomes (vo, wi) in Gu.

There is a Hamilton cycle in one precisely when there is a Hamilton cycle in the other (see Notes 18).
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3-SAT to DIRECTED-HAMILTON-CYCLE
Example: the directed graph produced for a formula including the clause
x ∨ ¬y ∨ z. Nodes and edges related to other clauses are not shown. See Notes
18 for details.
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