COSC 341 Theory of Computing Lecture 21 More reductions from 3-SAT to graph problems (3-COLOURING and HAMILTON-CYCLE)

> Stephen Cranefield stephen.cranefield@otago.ac.nz

> > 1

Keywords: 3-SAT, 3-COLOURING, HAMILTON-CYCLE

3-SAT to 3-COLOURING

Step 1: Define a "core" graph, in which each 3-colouring corresponds to a unique truth assignment for the 3-SAT instance. If there are k variables, we create k + 1 triangles in the graph, sharing a common "base" vertex. One triangle has its other two vertices labelled t and f.

Example for the 3-variable case (the 3-colouring corresponds to x = t, y = t and z = f):

3-SAT to 3-COLOURING (continued)

Step 2: Add "gadgets". For each clause $a \lor b \lor c$ in the 3-SAT instance (where a, b and c are literals), interconnect the vertices for these literals and t in the core graph as shown below:

Some literals true. A 3-colouring exists.

3-SAT tO HAMILTON-CYCLE

It is convenient to do this in two steps:

- First reduce 3-SAT to DIRECTED-HAMILTON-CYCLE (determining whether a directed graph has a Hamilton cycle).
- ► Then reduce DIRECTED-HAMILTON-CYCLE to HAMILTON-CYCLE.

We will show the second step first. Given a directed graph G_d , we construct an undirected graph G_u . Each vertex v in G_d is replaced by three vertices in G_u : v_i , v and v_o (the "*i*" and "*o*" mean "in" and " out). We add edges (v_i, v) and (v, v_o) . An edge (v, w) in G_d becomes (v_o, w_i) in G_u .

There is a Hamilton cycle in one precisely when there is a Hamilton cycle in the other (see Notes 18).

A Hamilton cycle exists

No Hamilton cycle exists

3-SAT to DIRECTED-HAMILTON-CYCLE

Example: the directed graph produced for a formula including the clause $x \lor \neg y \lor z$. Nodes and edges related to other clauses are not shown. See Notes 18 for details.

