COSC 341
Theory of Computing
Lecture 22
NP-complete problems involving numbers:
(FAIR-DIVISION and SUBSET-SUM)

Stephen Cranefield
stephen.cranefield@otago.ac.nz

Keywords: 3-SAT, FAIR-DIVISION and
SUBSET-SUM

mailto:stephen.cranefield@otago.ac.nz

Problem definitions

SUBSET-SUM
Instance: A sequence w1, va, ... v, Of positive integers and a target value ¢
Problem: |s there a subset I C {1,2,...,n} suchthat }"._; v; = t?

FAIR-DIVISION
Instance: A sequence vy, ve, ... v, Of positive integers.
Problem: Is there a subset I C {1,2,...,n} suchthat > ;. vi =3z v;?

Is there a reduction from one to the other?

» If we could solve SUBSET-SUM efficiently, then it would be easy to solve
FAIR-DIVISION efficiently. We can construct a Turing machine that computes
the sum, S, of all the v’s, answers “no” if S is odd, and otherwise runs
SUBSET-SUM with input v1, ve, ...v, and t = S/2.

» However, we can also reduce SUBSET-SUM to FAIR-DIVISION!

Reduction of SUBSET-SUM to FAIR-DIVISION

A SUBSET-SUM instance vy, v2, ..., v, With target ¢ is trivially positive if t = 0 or ¢t = S where
S = >, vi. That can be reduced to any positive FAIR-DIVISION instance, e.g. 1, 1. If 0 < t < S,
consider this FAIR-DIVISION instance:

V1, V2, «o. , Upn, 35S — 1, 25+t

» Suppose this has a fair division. The total sum is 6.5 so the two new parts must be in different
partitions (they add to 5S and there’s only S left over). But then, one partition contains vs and
3S —t and sums to 35, so S = t, which is positive for SUBSET-SUM.

> On the other hand, if the original SUBSET-SUM instance was positive for SUBSET-SUM, then the
new one is a positive instance for FAIR-DIVISION using the division that produces ¢ from among
the v’s, and then adds the part of value 35 — t.

See Notes 19 for the argument for why this is a polynomial-time reduction.

Complexity of SUBSET-SUM

Is SUBSET-SUM easy? Consider this dynamic programming algorithm from Wikipedia (lightly edited):

Suppose we have the following sequence of elements in an instance: x1, ..., x,.

We define a state as a pair (i, s) of integers. This represents the fact that:
there is a nonempty subset of 1, . .., x; that sums to s

Each state (7, s) has two next states:
> (i+1,s), implying that ;41 is not included in the subset;
» (i+ 1,84+ xi11), implying that z;1 is included in the subset.

Starting from the initial state (0, 0), it is possible to use any graph search algorithm (e.g.
breadth-first search) to search for the state (n,t) where ¢ is the target value for the sum. If the
state is found, then by backtracking we can find a subset with a sum of exactly ¢.

The run-time of this algorithm is at most linear in the number of states. The number of states is at
most n times the number of different possible sums. ... if all input values are positive and bounded
by some constant ¢, then the sum of the z; is at most ne, so the time required is O(n’c).

Why does this not count as a polynomial-time algorithm? If the inputs are in binary (at least)
and are n-bit integers, then the target ¢ could be as large as 2", giving time complexity O(n2™),
which is not polynomial in the input size n?.

SUBSET-SUM is NP-complete (reduction from 3-SAT)

Suppose the 3-SAT instance has k variables z; to zx and ¢ clauses C; to C.. We reduce this to a
SUBSET-SUM instance with numbers written in base 4 (this is a convenience: any base larger than 3
will work).

Each number will have & variable digits followed by ¢ clause digits. Each variable z; is mapped to
two numbers: one recording which clauses contain z; and another recording which clauses contain
—x,;. For example:

var clause
T 1 0 0|1 0 O

zVyVz -z |1 0 0|0 1 1
—zV-oyVz y 01 0|1 0 1
—zVyV -z -y|0 1 0|0 1 O
z 0 0 1|1 1 0
-z|0 0 1|0 0 1

The SUBSET-SUM target value has a 1 for each variable digit to ensure each variable has exactly one
truth value:

t|1 1 1?7 2
What about the target’s clause digits?

SUBSET-SUM is NP-complete (reduction from 3-SAT, continued)

Each clause has three literals and must be satisfied by between 1 and 3 of them. We can set the
clause digits for the target to be 3 and add to our SUBSET-SUM instance two extra numbers for each
clause, each with the corresponding clause variable set to 1 (and other digits 0):

var clause
T 1 0 0|1 0 O
-z|1 0 0|0 1 1
Y 0 1 0|1 0 1
-y |0 1 0|0 1 O
z 0 0 1|1 1 0
-z|0 0 1|0 0 1
ci1 |0 0O O|1 O O
ci2 |0 0 0|1 O O
c21 |0 0O 0]0 1 O
c22 |0 0O 0[]0 1 O
cs1 |0 0 0]0 O 1
c32 |0 0 0]0 O 1
t 1 1 113 3 3

>

>

A satisfying assignment must have
1 < n < 3 literals true for each clause C;.

It will map to a SUBSET-SUM subset that
uses n — 1 of the numbers corresponding to
Ci.

Note that it is impossible for any sum to have
a 3 for some digit and also carry a 1 to the
previous digit, so columns are independent
of each other.

Convince yourself that this reduction
preserves positive and negative instances
and is bounded by a polynomial function of
the input size.

Do search version of decision problems have the same complexity?

Recall the INDEPENDENT-SET decision problem:

INDEPENDENT-SET
Instance: A graph G and a positive integer k
Problem: Does G have an independent set of size k?

Consider this “search” version of the problem:

MAXIMUM-INDEPENDENT-SET
Instance: A graph G
Problem: Determine an independent subset I of G of maximum possible size.

Note: This is not the same as finding a maximal independent set: one that can’t
be further extended. A trivial greedy algorithm can find one of those: choose a
vertex, delete all its neighbours, choose a vertex, ...

Is the time-complexity of this the same as INDEPENDENT-SET?

Using INDEPENDENT-SET to solve MAXIMUM-INDEPENDENT-SET

1. Perform a binary search between 1 and n = the number of vertices of G, to
find the maximum k& for which INDEPENDENT-SET succeeds.

2. Construct a maximum independent set of that size:

Choose a vertex v of G. Delete it and its neighbours. Ask INDEPENDENT-SET
if the remaining graph has an independent set of size k — 1. If yes, we've
found our first vertex (and we’ll find £ — 1 more in what'’s left). If no, then we
can’t use v in a maximum independent set, so just delete v and proceed.

We'll make at most n calls to INDEPENDENT-SET in this phase, all on graphs
having the same number as or fewer edges than G, so if we could resolve
INDEPENDENT-SET efficiently, we’ll have build our maximum independent set
efficiently as well.

Similar tricks almost always work for other decision problems. See Notes 19 for
detalils.

