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Problem definitions

SUBSET-SUM

Instance: A sequence v1, v2, . . . vn of positive integers and a target value t
Problem: Is there a subset I ⊆ {1, 2, . . . , n} such that

∑
i∈I vi = t?

FAIR-DIVISION

Instance: A sequence v1, v2, . . . vn of positive integers.
Problem: Is there a subset I ⊆ {1, 2, . . . , n} such that

∑
i∈I vi =

∑
j ̸∈I vj?

Is there a reduction from one to the other?

▶ If we could solve SUBSET-SUM efficiently, then it would be easy to solve
FAIR-DIVISION efficiently. We can construct a Turing machine that computes
the sum, S, of all the v’s, answers “no” if S is odd, and otherwise runs
SUBSET-SUM with input v1, v2, . . . vn and t = S/2.

▶ However, we can also reduce SUBSET-SUM to FAIR-DIVISION!
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Reduction of SUBSET-SUM to FAIR-DIVISION

A SUBSET-SUM instance v1, v2, . . . , vn with target t is trivially positive if t = 0 or t = S where
S =

∑
i vi. That can be reduced to any positive FAIR-DIVISION instance, e.g. 1, 1. If 0 < t < S,

consider this FAIR-DIVISION instance:

v1, v2, . . . , vn, 3S − t, 2S + t

▶ Suppose this has a fair division. The total sum is 6S so the two new parts must be in different
partitions (they add to 5S and there’s only S left over). But then, one partition contains vs and
3S − t and sums to 3S, so S = t, which is positive for SUBSET-SUM.

▶ On the other hand, if the original SUBSET-SUM instance was positive for SUBSET-SUM, then the
new one is a positive instance for FAIR-DIVISION using the division that produces t from among
the v’s, and then adds the part of value 3S − t.

See Notes 19 for the argument for why this is a polynomial-time reduction.
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Complexity of SUBSET-SUM
Is SUBSET-SUM easy? Consider this dynamic programming algorithm from Wikipedia (lightly edited):

Suppose we have the following sequence of elements in an instance: x1, . . . , xn.

We define a state as a pair (i, s) of integers. This represents the fact that:
there is a nonempty subset of x1, . . . , xi that sums to s

Each state (i, s) has two next states:
▶ (i+ 1, s), implying that xi+1 is not included in the subset;
▶ (i+ 1, s+ xi+1), implying that xi+1 is included in the subset.

Starting from the initial state (0, 0), it is possible to use any graph search algorithm (e.g.
breadth-first search) to search for the state (n, t) where t is the target value for the sum. If the
state is found, then by backtracking we can find a subset with a sum of exactly t.

The run-time of this algorithm is at most linear in the number of states. The number of states is at
most n times the number of different possible sums. . . . if all input values are positive and bounded
by some constant c, then the sum of the xi is at most nc, so the time required is O(n2c).

Why does this not count as a polynomial-time algorithm? If the inputs are in binary (at least)
and are n-bit integers, then the target t could be as large as 2n, giving time complexity O(n2n),
which is not polynomial in the input size n2.
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SUBSET-SUM is NP-complete (reduction from 3-SAT)
Suppose the 3-SAT instance has k variables x1 to xk and c clauses C1 to Cc. We reduce this to a
SUBSET-SUM instance with numbers written in base 4 (this is a convenience: any base larger than 3
will work).

Each number will have k variable digits followed by c clause digits. Each variable xi is mapped to
two numbers: one recording which clauses contain xi and another recording which clauses contain
¬xi. For example:

x ∨ y ∨ z
¬x ∨ ¬y ∨ z
¬x ∨ y ∨ ¬z.

var clause

x 1 0 0 1 0 0
¬x 1 0 0 0 1 1
y 0 1 0 1 0 1
¬y 0 1 0 0 1 0
z 0 0 1 1 1 0
¬z 0 0 1 0 0 1

The SUBSET-SUM target value has a 1 for each variable digit to ensure each variable has exactly one
truth value:

t 1 1 1 ? ? ?
What about the target’s clause digits?
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SUBSET-SUM is NP-complete (reduction from 3-SAT, continued)
Each clause has three literals and must be satisfied by between 1 and 3 of them. We can set the
clause digits for the target to be 3 and add to our SUBSET-SUM instance two extra numbers for each
clause, each with the corresponding clause variable set to 1 (and other digits 0):

var clause

x 1 0 0 1 0 0
¬x 1 0 0 0 1 1
y 0 1 0 1 0 1
¬y 0 1 0 0 1 0
z 0 0 1 1 1 0
¬z 0 0 1 0 0 1

c11 0 0 0 1 0 0
c12 0 0 0 1 0 0
c21 0 0 0 0 1 0
c22 0 0 0 0 1 0
c31 0 0 0 0 0 1
c32 0 0 0 0 0 1

t 1 1 1 3 3 3

▶ A satisfying assignment must have
1 ≤ n ≤ 3 literals true for each clause Ci.

▶ It will map to a SUBSET-SUM subset that
uses n− 1 of the numbers corresponding to
Ci.

▶ Note that it is impossible for any sum to have
a 3 for some digit and also carry a 1 to the
previous digit, so columns are independent
of each other.

▶ Convince yourself that this reduction
preserves positive and negative instances
and is bounded by a polynomial function of
the input size.
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Do search version of decision problems have the same complexity?

Recall the INDEPENDENT-SET decision problem:

INDEPENDENT-SET

Instance: A graph G and a positive integer k
Problem: Does G have an independent set of size k?

Consider this “search” version of the problem:

MAXIMUM-INDEPENDENT-SET

Instance: A graph G
Problem: Determine an independent subset I of G of maximum possible size.

Note: This is not the same as finding a maximal independent set: one that can’t
be further extended. A trivial greedy algorithm can find one of those: choose a
vertex, delete all its neighbours, choose a vertex, . . .

Is the time-complexity of this the same as INDEPENDENT-SET?
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Using INDEPENDENT-SET to solve MAXIMUM-INDEPENDENT-SET

1. Perform a binary search between 1 and n = the number of vertices of G, to
find the maximum k for which INDEPENDENT-SET succeeds.

2. Construct a maximum independent set of that size:

Choose a vertex v of G. Delete it and its neighbours. Ask INDEPENDENT-SET

if the remaining graph has an independent set of size k − 1. If yes, we’ve
found our first vertex (and we’ll find k − 1 more in what’s left). If no, then we
can’t use v in a maximum independent set, so just delete v and proceed.

We’ll make at most n calls to INDEPENDENT-SET in this phase, all on graphs
having the same number as or fewer edges than G, so if we could resolve
INDEPENDENT-SET efficiently, we’ll have build our maximum independent set
efficiently as well.

Similar tricks almost always work for other decision problems. See Notes 19 for
details.
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