COSC 341 Theory of Computing Lecture 22 NP-complete problems involving numbers: (FAIR-DIVISION and SUBSET-SUM)

> Stephen Cranefield stephen.cranefield@otago.ac.nz

> > 1

Keywords: 3-SAT, FAIR-DIVISION and SUBSET-SUM

Problem definitions

SUBSET-SUM Instance: A sequence $v_1, v_2, \ldots v_n$ of positive integers and a target value tProblem: Is there a subset $I \subseteq \{1, 2, \ldots, n\}$ such that $\sum_{i \in I} v_i = t$?

FAIR-DIVISION Instance: A sequence $v_1, v_2, \ldots v_n$ of positive integers. Problem: Is there a subset $I \subseteq \{1, 2, \ldots, n\}$ such that $\sum_{i \in I} v_i = \sum_{j \notin I} v_j$?

Is there a reduction from one to the other?

- ▶ If we could solve SUBSET-SUM efficiently, then it would be easy to solve FAIR-DIVISION efficiently. We can construct a Turing machine that computes the sum, S, of all the v's, answers "no" if S is odd, and otherwise runs SUBSET-SUM with input $v_1, v_2, \ldots v_n$ and t = S/2.
- ► However, we can also reduce SUBSET-SUM to FAIR-DIVISION!

Reduction of SUBSET-SUM to FAIR-DIVISION

A SUBSET-SUM instance v_1, v_2, \ldots, v_n with target t is trivially positive if t = 0 or t = S where $S = \sum_i v_i$. That can be reduced to any positive FAIR-DIVISION instance, e.g. 1, 1. If 0 < t < S, consider this FAIR-DIVISION instance:

$$v_1, v_2, \ldots, v_n, 3S - t, 2S + t$$

Suppose this has a fair division. The total sum is 6S so the two new parts must be in different partitions (they add to 5S and there's only *S* left over). But then, one partition contains *v*s and 3S - t and sums to 3S, so S = t, which is positive for SUBSET-SUM.

• On the other hand, if the original SUBSET-SUM instance was positive for SUBSET-SUM, then the new one is a positive instance for FAIR-DIVISION using the division that produces t from among the v's, and then adds the part of value 3S - t.

See Notes 19 for the argument for why this is a polynomial-time reduction.

Complexity of SUBSET-SUM

Is SUBSET-SUM easy? Consider this dynamic programming algorithm from Wikipedia (lightly edited):

Suppose we have the following sequence of elements in an instance: x_1, \ldots, x_n .

We define a *state* as a pair (i, s) of integers. This represents the fact that: there is a nonempty subset of x_1, \ldots, x_i that sums to s

Each state (i, s) has two *next* states:

- (i+1,s), implying that x_{i+1} is not included in the subset;
- $(i+1, s+x_{i+1})$, implying that x_{i+1} is included in the subset.

Starting from the initial state (0,0), it is possible to use any graph search algorithm (e.g. breadth-first search) to search for the state (n,t) where t is the target value for the sum. If the state is found, then by backtracking we can find a subset with a sum of exactly t.

The run-time of this algorithm is at most linear in the number of states. The number of states is at most n times the number of different possible sums. . . . if all input values are positive and bounded by some constant c, then the sum of the x_i is at most nc, so the time required is $O(n^2c)$.

Why does this not count as a polynomial-time algorithm? If the inputs are in binary (at least) and are *n*-bit integers, then the target *t* could be as large as 2^n , giving time complexity $O(n2^n)$, which is not polynomial in the input size n^2 .

SUBSET-SUM is NP-complete (reduction from 3-SAT)

Suppose the 3-SAT instance has k variables x_1 to x_k and c clauses C_1 to C_c . We reduce this to a SUBSET-SUM instance with numbers written in base 4 (this is a convenience: any base larger than 3 will work).

Each number will have k variable digits followed by c clause digits. Each variable x_i is mapped to two numbers: one recording which clauses contain x_i and another recording which clauses contain $\neg x_i$. For example:

		var		clause			
	x	1	0	0	1	0	0
$x \lor y \lor z$	$\neg x$	1	0	0	0	1	1
$\neg x \vee \neg y \vee z$	y	0	1	0	1	0	1
$\neg x \lor y \lor \neg z.$	$\neg y$	0	1	0	0	1	0
	z	0	0	1	1	1	0
	$\neg z$	0	0	1	0	0	1

The SUBSET-SUM target value has a 1 for each variable digit to ensure each variable has exactly one truth value:

$$t \mid 1 \mid 1 \mid 1 \mid ? \mid ? \mid ?$$

What about the target's clause digits?

SUBSET-SUM is NP-complete (reduction from 3-SAT, continued)

Each clause has three literals and must be satisfied by between 1 and 3 of them. We can set the clause digits for the target to be 3 and add to our SUBSET-SUM instance two extra numbers for each clause, each with the corresponding clause variable set to 1 (and other digits 0):

		var		clause			
x	1	0	0	1	0	0	
$\neg x$	1	0	0	0	1	1	
y	0	1	0	1	0	1	
$\neg y$	0	1	0	0	1	0	
z	0	0	1	1	1	0	
$\neg z$	0	0	1	0	0	1	
c_{11}	0	0	0	1	0	0	
c_{12}	0	0	0	1	0	0	
c_{21}	0	0	0	0	1	0	
c_{22}	0	0	0	0	1	0	
c_{31}	0	0	0	0	0	1	
c_{32}	0	0	0	0	0	1	
t	1	1	1	3	3	3	

- A satisfying assignment must have $1 \le n \le 3$ literals true for each clause C_i .
- ► It will map to a SUBSET-SUM subset that uses n − 1 of the numbers corresponding to C_i.
- Note that it is impossible for any sum to have a 3 for some digit and also carry a 1 to the previous digit, so columns are independent of each other.
- Convince yourself that this reduction preserves positive and negative instances and is bounded by a polynomial function of the input size.

Do search version of decision problems have the same complexity?

Recall the INDEPENDENT-SET decision problem:

INDEPENDENT-SET Instance: A graph G and a positive integer k Problem: Does G have an independent set of size k?

Consider this "search" version of the problem:

MAXIMUM-INDEPENDENT-SET Instance: A graph GProblem: Determine an independent subset I of G of maximum possible size.

Note: This is not the same as finding a *maximal* independent set: one that can't be further extended. A trivial greedy algorithm can find one of those: choose a vertex, delete all its neighbours, choose a vertex, ...

Is the time-complexity of this the same as INDEPENDENT-SET?

Using INDEPENDENT-SET to solve MAXIMUM-INDEPENDENT-SET

- 1. Perform a binary search between 1 and n = the number of vertices of G, to find the maximum k for which INDEPENDENT-SET succeeds.
- 2. Construct a maximum independent set of that size:

Choose a vertex v of G. Delete it and its neighbours. Ask INDEPENDENT-SET if the remaining graph has an independent set of size k - 1. If yes, we've found our first vertex (and we'll find k - 1 more in what's left). If no, then we can't use v in a maximum independent set, so just delete v and proceed.

We'll make at most n calls to INDEPENDENT-SET in this phase, all on graphs having the same number as or fewer edges than G, so if we could resolve INDEPENDENT-SET efficiently, we'll have build our maximum independent set efficiently as well.

Similar tricks almost always work for other decision problems. See Notes 19 for details.