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Matchings in graphs

▶ A bipartite graph is a graph, G, whose vertices can be partitioned into two
sets A and B such that every edge has one endpoint in A and the other in B.

▶ A matching, M , in a bipartite graph is a set of edges, no two of which share a
common endpoint.

▶ A maximum matching in G is a matching whose size is as large as it possibly
can be.

▶ A perfect matching is a matching in which every vertex of G is the endpoint of
some edge in the matching.

▶ A matching saturates A if every vertex in A is the endpoint of an edge in the
matching.
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Example matchings

Applicants Jobs A maximum matching An added edge
allows a perfect

matching

Example based on https://www.geeksforgeeks.org/maximum-bipartite-matching/
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Questions arising

Let G be a bipartite graph with parts A and B:
▶ Does G have a perfect (saturating) matching?
▶ Find a perfect (saturating) matching for G.
▶ Does G have a matching containing at least k edges? (k a parameter)
▶ Find a matching in G having at least k edges.
▶ What is the size of a maximum matching for G?
▶ Find a maximum matching for G.
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Hall’s theorem

In a graph G, for a set X of vertices, let N(X) denote those vertices that are
neighbours of some vertex in X.

Theorem
A bipartite graph G with parts A and B has a matching that saturates A if and only
if |N(X)| ⩾ |X| for every X ⊆ A.
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Applying Hall’s theorem

What does Hall’s Theorem say about the possibility of finding maximum matchings for the graphs
above?
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Proof of Hall’s theorem
▶ Direction ⇒: Suppose we have a saturating matching. Then each vertex a ∈ A has a different

distinct neighbour in B via the matching, and possibly others, so |N(X)| ⩾ |X|.
▶ Direction ⇐: Let M be a maximum matching (there must be one). We need to use Hall’s

condition to show that M saturates A. Suppose M does not saturate A. Then there must be
some unmatched a ∈ A. Denote the set {a} by A0. Consider the set of its neighbours, N(A0).

▶ If any member b of N(A0) is unmatched, we have a single-edge “augmenting path” and
can add (a, b) to the matching, contradicting the fact that M is a maxiumum matching.

▶ Therefore all members of N must be matched. Consider the set A1 containing a and all
the vertices in A that are matched by M to some vertex in N(A0). This has size
|N(A0)|+ 1. Hall’s condition says that the set of neighbours of A1 must have at least that
many elements. Therefore, N(A1) contains at least one element b of B that is not in
N(A0).

▶ If b is unmatched, we must have a multi-edge “augmenting path” from a to b via a
vertex in N(A0) and then one in A1. This has an edge not in M , then one in M and
then one not in M . We can add the first and third to M and remove the second from
M , resulting in a larger matching than our supposedly maximum one: contradiction!

▶ If b is not matched, repeat the steps above to form A2, N(A2), A3, . . . until we find
an unmatched node in B and therefore an augmenting path from a, giving us a way
to increase the size of M , which is a contradiction.
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Illustrations of the proof of Hall’s theorem

Above: different bipartite graphs and the application of Hall’s theorem (top: in one step; bottom: in
two steps). Augmenting paths are highlighted with blue shadows, and the matchings are updated by
swapping the status (in or out of the matching) of the edges in those paths.
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Ideas arising from the proof

An augmenting path for a matching M is a path P that starts and finishes at an
unmatched vertex and whose edges alternate between not belonging to M and
belonging to M .

The edges traversed in P alternate between edges that are in M (every odd edge
in the traversal sequence) and those that are in M (every even edge).

We can use the edges in an augmenting path to create a larger matching. Simply
remove from M any edge in P that is in M and add any edge in P that is not in P .
There is one more edge of the latter type in P , so the matching increases in size
by 1.

Lemma
If a matching M is not maximum then it has an augmenting path P .
In fact, if a maximum matching has t more edges than M then there are t
vertex-disjoint augmenting paths for M .
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The Hopcroft-Karp algorithm

An algorithm that computes a maximum matching for a bipartite graph.
See explanation on YouTube.
Require: A bipartite graph G with parts A and B
Ensure: A maximum matching M of G

M ← {}
repeat

- From the free vertices in A do a breadth-first search alternating edges out of
and in the matching until you reach a free vertex in B or none are found.
if one or more free vertices in B are reached then

- Construct by depth-first search a maximal set of augmenting paths for M
- Update M by switching the augmenting paths

end if
until no augmenting path is found
return M
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The Hopcroft-Karp algorithm explained
▶ In the first round we just construct (greedily) some maximal matching.
▶ Thereafter, we find a maximal collection of disjoint shortest augmenting paths

and switch to extend the matching.
▶ “Obviously” (see Notes 20) the shortest augmenting paths get longer in each

round.
▶ After

√
|V | rounds they’ll have length at least

√
|V |.

▶ The matching we have at that point can differ from the maximum matching by
at most

√
|V | edges since that’s the largest number of disjoint augmenting

paths we could possibly have.
▶ So O(

√
|V |) iterations through the loop will occur and (with care) the total cost

is O(|E|
√
|V |), so finding a maximum matching in a bipartite graph is easilly

polynomial in time.
▶ What happens if we generalise the problem from edges of size 2 to edges of

size three?
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Hypergraphs
▶ A hypergraph is a set of vertices and hyperedges where a hyperedge is just a

subset of the vertices.
▶ If each hyperedge contains k elements then the hypergraph is called

k-uniform.
▶ A 2-uniform hypergraph is just a graph.
▶ A matching in a hypergraph is a disjoint set of hyperedges. It is perfect if its

union is the set of all vertices.

Image credit: Hypergraph.svg: Kilom691derivative work: Pgdx, CC BY-SA 3.0, via Wikimedia Commons
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The 3D-matching problem
3D-MATCHING
Does a 3-uniform hypergraph have a perfect matching?

A 3-uniform hypergraph A matching that is not perfect

This problem is NP-complete
See reduction from 3-SAT in Notes 20 and slides by Carl Kingsford, UMCP, which show a clause widget

Images by Miym, Own work, CC BY-SA 3.0, Link
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