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The exam in 2025

» Worth 70% of your final grade.

» Overall structure similar to previous years: one question worth roughly half
the total marks on categorising languages and then a mix of other material.

» Questions that ask you to ‘explain’ or ‘describe’ something (for example) are
intended to elicit medium length answers: not single sentences but not a page
either. Beware of using bullet points—they often seem to encourage overly
brief statements. Link up the points you make to form a connected argument.

» Definitions of the two pumping lemmas are given as reference material.



Previous exams

» Exams since 2001 are available from the library.

> Pre-2019 there’s a very standard structure, which has varied a bit since then
but the general contents are still quite similar.

» Do remember that 2020 was a bit of a special case!

» There has been a gradual shift of emphasis away from languages and
towards machines and algorithms (but languages are still important!)

» Solution sets will not be provided (don’t ask!), but if you've tried a question or
questions and want feedback, or you are confused about what’s being asked,
do please get in touch.

» | can arrange a pre-exam question and answer session if there is interest
(take poll!)


https://www.otago.ac.nz/library/exams/

Two and a half machines

> Finite state automata
» Pushdown automata (the half - we really didn’t cover these in great detail)
» Turing machines

The fundamental question for each type is “What kind of things can (or can’t) this
compute?"



Deterministic finite state automata (DFAS)

» Fundamental clockwork mechanism

> See a symbol, make a transition (i.e., update internal state)
» Red light/Green light (accepting states)

» What kinds of sets of words do they accept?



Regular languages

» Recursive closure of singleton (symbol or empty word) languages under:
» Concatenation
» Union
» Kleene-star (concatenation of a language with itself 0 or more times)



Non-deterministic finite state automata (NFAs)

» May change state spontaneously (e-transitions)

» May choose from a set of options on a given symbol

» Easier to glue together or modify

» Surprisingly(?), they accept the same languages as DFAs



|dentifying regular languages

» (Positive) Find a DFA, NFA, regular expression, or regular grammar for it
» (Negative) Show that the pumping lemma is violated
» (Both) Use the Myhill-Nerode theorem

Theorem

A language L C ¥* is regular if and only if the equivalence relation ~ g, on %*
has finitely many equivalence classes. The definition of w ~ .z v is that the set of
x € ¥* such that wx € L is the same as the set of y € ¥* such that vy € L



Pushdown automata
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Augments a finite state machine with a stack for memory

Transitions based on symbol read, and top symbol of stack (optional)
Transition can cause push to or pop from stack (or both)

Acceptance by final state, with all input consumed and an empty stack
Languages accepted have context-free grammars (CFGs) — proof not given in
this paper.

A pumping lemma for languages described by CFGs exists



Turing machines

» Internal control by finite state
» Access to a tape containing symbols
» Transitions based on current state and symbol on tape

» Can write in current location and move tape one position left or right (and in
some versions, stay)



Universal Turing machine

There is a way of representing Turing machines as binary strings (machine M,
string R(M))

There is a Turing machine U that:
» Processes input tapes of the form R(M)#w
» Simulates the operation of M on w

In more familiar terms, U is an interpreter, R(M) is source code for a program,
and w is the input.



Non-deterministic Turing machines

» Can use the same model as NFA (spontaneous transitions or options)

» More useful model is to have a second tape on which a genie writes some
sort of hint before the computation begins

» To accept a language means that for every word in the language there is at
least one good hint, but for all words not in the language, no hints are good.



HALT

Instance: A Turing machine M (represented as R(M)) and an input word w
Problem: Does M halt on input w?

» Observe that if the answer is “yes” we can determine that just by running U on
R(M)#w
» To show that we can’t solve the problem, imagine we could
> Create an “anti-halting” machine (on input R(M)#w loops if M would halt and
halts if M would loop)
»> Create the machine D that, on input R(M) runs the anti-halting machine on
input R(M)#R(M).
»> Ask what does D do on input R(D)?



Turing-reducibility

» If we can mechanically convert instances of one decision problem, A, to
instances of another, B, in such a way that the answer is preserved, we say
that A is reducible to B.

» If Bis easy (i.e., solvable) then A must be easy too.
» So if A is undecidable (e.g., A could be HALT) then B must be too.

> Rice’s theorem All non-trivial questions about “properties of the languages
that a TM accepts” are undecidable because of a reduction from HALT.



Timing matters

> It's reasonable to say that a problem is feasible if there’s a polynomial time
algorithm to resolve it.

» The model of computing doesn’t matter (much).
» Except, we don’t know whether or not non-determinism helps.

» P is the class of all languages that are recognised by some deterministic TM
with a polynomial-time bound, meaning it halts on all inputs of size n after at
most A x n¢ steps for some fixed constants A and c.

» For NP change deterministic to hon-deterministic
» The million-dollar question: Does P = NP?



All about NP

» A problem is NP-complete if it's in NP and there’s a polynomial-time
reduction of any problem in NP to it (intuitively, it's at least as hard as any
other problem in N P).

» A problem is NP-hard if such a reduction exists, but it may not itself be in NP
(meaning, we know no way of verifying correct answers efficiently)

> SATISFIABILITY is NP-complete via the “model snapshots of a TM in action as
a set of boolean constraints” argument (Cook-Levin theorem).

» From there, via reductions, many natural problems in graph theory and other
areas are NP-complete.



Fixed-parameter tractability and approximation

>

>

“What can we do with hard problems?” (aside from hoping that the instances
we're trying to solve might be easy)

A problem is fixed-parameter tractable if its difficulty can be confined to an
auxiliary parameter k leading to time bounds of the form O(f(k)n¢) where f
might be very badly behaved, but ¢ is fixed. So, for small values of k£ we might
still be able to handle a wide variety of problem sizes.

A c-approximation algorithm finds a feasible solution to an optimisation
problem that is guaranteed to be within a factor of ¢ of the true optimum.

In other optimisation situations (not discussed in detail - but TSP is such an
example) there are practical methods that produce feasible solutions which
post facto can be shown to be very nearly optimal, but do not provide such
guarantees a priori.



Some good news

From 1999 onwards, the Conflict-Driven Clause Learning (CDCL) family of
algorithms revolutionised the solution of SAT problems. These can solve practical
instances of SAT with millions of variables. SAT-solvers can now be used as
components of solvers for complex problems such as software and hardware

verification.



