
COSC 341 Notes: 2 Equivalence relations and cardinality

1 Equivalence relations

An equivalence relation is a particularly important type of relation on a set (i.e. from a set
A to itself). Intuitively, equivalence relations identify subsets of A sharing some common
feature. Equivalence relations behave very much like equality (and indeed the equals
method in many programming languages generally implements some sort of equivalence
relation), and so we tend to denote them by infix symbols such as ∼ (i.e. we write a ∼ b
rather than (a, b) ∈ E).

The defining characteristics of an equivalence relation ∼ on a set A are:

Reflexivity For every a ∈ A, a ∼ a.

Symmetry For every a, b ∈ A if a ∼ b then b ∼ a.

Transitivity For every a, b, c ∈ A if a ∼ b and b ∼ c then a ∼ c.

In potatoes and arrows terms this means that every element has an arrow from itself to
itself, every arrow points both ways, and that chains of arrows are also represented by
single arrows. That means that, for any a ∈ A, the set of those b ∈ A such that a ∼ b forms
a big clump of elements all related to one another. This clump is called the equivalence class
of a and denoted [a].

Theorem 1.1. Let ∼ be an equivalence relation on A. The equivalence classes of ∼ form a parti-
tion of A. Specifically:

• for every a ∈ A, a ∈ [a]

• for every a, b ∈ A either [a] = [b] (if a ∼ b) or [a] ∩ [b] = ∅ (if a ̸∼ b).

More generally, there is a direct correspondence between equivalence relations and par-
titions. The direction from a relation to a partition is given above. But, if we have a
partition we can define a relation by “a ∼ b if a and b lie in the same set of the partition”
and it is easily seen that this is an equivalence relation whose equivalence classes are the
sets of the partition.
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2 How big is a set?

What do we mean when we say “NZ has five denominations of coins”, “I have five fin-
gers”, “there are five weekdays”? What common property of these sets is captured by
the number five?

10 thumb Monday
20 index Tuesday
50 middle Wednesday
100 ring Thursday
200 pinkie Friday

What we see is that there is a one to one correspondence between any two of these
sets, and indeed between any one of them and the set {1, 2, 3, 4, 5} (or to be more CS-
y, {0, 1, 2, 3, 4}).

That this was the correct definition of the “size” of a set was recognized by Cantor.

3 Cardinality

Definition 3.1. Two sets, X and Y , are the same size (equinumerous, have the same
cardinality) if there is a one to one correspondence between them. In this case we write
card(X) = card(Y )

Definition 3.2. We say that card(X) ≤ card(Y ) if there is an injection from X to Y .

You can define all you want but there’s a certain obligation to check that it all make sense.
Among other things we should check that “having the same cardinality” behaves like an
equivalence relation between sets, and that card(X) ≤ card(Y ) and card(Y ) ≤ card(X)
implies that card(X) = card(Y ). The first of these is straight forward definition chasing,
while the second is somewhat more delicate and is called the Schröder-Bernstein theorem.
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4 Denumerable sets

A set is finite if we can (in principle) count its elements, that is X is finite if

card(X) = card({1, 2, . . . , n})

for some n ∈ N. In that case we use a short form card(X) = n.

A set is infinite if it is not finite (d’uh)

In fact, a set is infinite if card(N) ≤ card(X). That’s not so easy to prove from the defini-
tions. What this means is that there are no “small” infinite sets using Cantor’s definitions,
e.g. the set of powers of 10 has just the same cardinality as N itself (the map i 7→ 10i is a
bijection).

A set is countable or countably infinite if it is equinumerous with N, and a set is denumerable
if it is finite or countably infinite.

Some apparently large infinite sets turn out to be countable. For instance, Z, the set of all
integers. We can define a bijection f : N → Z by:

f(n) =

{
−n/2 if n is even
(n+ 1)/2 if n is odd

Even N×N is equinumerous with N. We can begin to see how to construct a bijection by
listing the elements of N × N in some sensible order that makes sure we eventually see
each one:

0 (0,0)
1 (0,1)
2 (1,0)
3 (0,2)
4 (1,1)
5 (2,0)
6 (0,3)
. . .

Writing a formula for this function is not so easy, but in the other direction (from N × N
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to N) the following defines a bijection:

f(x, y) =
(x+ y)(x+ y + 1)

2
+ x

But it’s easier to prove the result by noting that it’s obvious that card(N) ≤ card(N × N)
(e.g. n 7→ (n, 0)), while the map (x, y) 7→ 2x3y gives an injection from N×N to N showing
that card(N× N) ≤ card(N).

5 Uncountable sets

So, is there really only a two way distinction between finite and infinite? No! Cantor’s
main contribution in this area was to demonstrate that there are different sizes of infinity
(in fact lots of them, but we won’t worry about that). For our purposes the main rea-
son for considering this result is because of a proof technique which it introduces, the
diagonal argument, which we will find useful later in showing that certain problems are
uncomputable.

Theorem 5.1. The set NN of all functions from N to N is not denumerable.

Proof. The proof of this result is “by contradiction”. That means, we suppose it to be false
and show that this leads to a contradiction. The only way to avoid the contradiction is
for the result to be true, so there we are. Ok, so suppose that the result is false meaning
that NN is denumerable. In that case there must exist a bijective function F : N → NN.
Since F (n) is itself a function, let’s denote it by fn for each n just to keep things simple.
What we are going to do is to construct a function g : N → N which is different from all
the functions fn. This g then is not the image of any element of N under F which will
contradict the assumption that F is a bijection (and hence that NN is denumerable). The
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idea is to imagine all the functions fn displayed in a giant table:

0 1 2 3 4 . . .

f0 5 2 6 1 3 . . .
f1 3 1 4 1 5 . . .
f2 0 0 0 0 0 . . .
f3 0 1 4 9 16 . . .
...

. . .

In the table we have highlighted the diagonal elements – in other words the values fk(k).
The idea to ensure that g ̸= fk will be to define it in such a way that it disagrees with
fk(k). In particular we could set:

g(k) = fk(k) + 1

for all k. So, it is not the case that g = fn for any n (since g and fn disagree in at least one
place) and we have the contradiction we wanted.
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6 Exercises

1. Define a binary relation ∼ on N by: n ∼ m if and only if n − m is a multiple of
12. Show that ∼ is an equivalence relation. How many equivalence classes does it
have?

2. Define a binary relation ∼ on N by: n ∼ m if and only if n and m have the same
first digit (written in base 10). Show that ∼ is an equivalence relation. How many
equivalence classes does it have?

3. Show that the set of even natural numbers is denumerable.

4. Show that the set of even integers is denumerable.

5. Show that the set of total functions from N to {0, 1} is uncountable.

6. A total function f : N → N is called monotone increasing if f(n) < f(n + 1) for
all n ∈ N. Prove that the set of monotone increasing functions from N to N is
uncountable.

7. (Harder) Show that, for any set A, card(A) < card(P(A)).

8. (Harder) A function f : N → {0, 1} is said to have finite support if it is non-zero only
finitely many times (or, put another way, there is some n such that for all m ≥ n,
f(m) = 0). Show that the set of functions from N to {0, 1} that have finite support
is denumerable.
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