COSC 341 Notes: 6 Not regular languages

1 Introduction

I've been circling around various ideas for proving how some languages such as {a"b" :
n > 0} are not regular. It’s time to bite the bullet and prove that. In doing so we’ll come
across a really useful characterisation of regular languages which inspires an algorithm
for minimising DFAs.

2 Suffix languages

As always, let ¥ be an alphabet and L C ¥* a language. For w € X*, define:
Suff(w, L) = {v e ¥* : wv € L}.

This is just the set of suffixes that can occur following w in L. It might well be empty of
course, for instance if L is the language NO-ba, then Suff (ba, L) = 0.

Now, associated to any language L let’s define an equivalence relation ~7, on ¥* as fol-
lows:
w~p u ifandonlyif Suff(w,L) = Suff(u,L).

Since the condition defining ~, is an “is the same as” condition it’s clear that this is an
equivalence relation. Another way to put this is: w ~j, u if and only if for every word
v € X*, either both wv and ww are in L or neither is.

3 The Myhill-Nerode theorem

Suppose that L is a regular language and is accepted by some DFA, M. What is Suff (w, L)?
It is the language accepted by the DFA which is identical to M except that the start state
is the one reached by first processing w through M. In particular, there are only finitely
many different possibilities for the set Suff (w, L) (one per state of M) or, what is the same
thing, for the number of equivalence classes of the relation ~;. That’s one half of the
Muyhill-Nerode theorem, whose full form is:

Theorem 3.1. A language L C ¥* is reqular if and only if the relation ~, has only finitely many
equivalence classes.

COSC 341 Notes: 6 Not regular languages

Proof. One half of the theorem was already proven in the previous paragraph. If L is
regular, then there is a DFA, M, that accepts it and then the number of equivalence classes
of ~p, is at most the number of states of M (it might be less if two different states of M
would accept the same language as starting states).

For the other half, suppose that L is a language and ~, has only finitely many equiva-
lence classes. Each equivalence class is associated with a particular language Suff(w, L)
for some (any) w in the equivalence class. Let these languages be Sy, Si, ... Sx_1 where,
for convenience, we choose Sy = Suff(e, L) = L. Define an automaton M as follows:

e [ts states are (labelled by) Sy, S1, ..., Sk—1.
* Sy is the initial state.

¢ For any state S; choose any w so that S; = Suff(w,L). Now for z € ¥, define
T(S;, x) = Suff(wz, L).

* Define the accepting states to be those S; such that € € S;.

AsTam fond of saying “this just works”.

Suppose that w € ¥* and let’s trace the computation carried out by M on input w =
wowy - - - wy—1. The first transition takes us to the state Suff (wy, L), the second to Suff (wyw;, L)
and so on. When the computation is complete we are in the state Suff (w, L). Under what
circumstances do we accept? Exactly if € € Suff(w, L), i.e., exactly if w € L. So indeed M
accepts (exactly) the language L.

The only slight gap at this point is in the definition of 7" — as presented it’s not entirely
clear that it might not depend on our choice of w (the mathematical terminology is that
it might not be well-defined). However, suppose that w ~, v. I claim that, for any z € %,
wzx ~, vx. This is because:
Suff (wz, L) = {y : wzxy € L}

={y : zy € Suff(w, L)}

={y : vy € Suff(v, L)} (since Suff(w, L) = Suff(v, L))

={y : vzy € L}

= Suff (vz, L)

COSC 341 Notes: 6 Not regular languages

Thus, where we “choose w” or “choose v” does not change the value we want to assign
to T'(S;, x), ensuring that this value is well-defined. O

The power of the Myhill-Nerode theorem is twofold: it gives a great tool to prove that
languages are non-regular, but it also shows how to build the smallest possible automa-
ton recognising a given language.

4 Non-regular languages

Let’s start with an example we’ve considered many times now. I claim that the language
L = {a"b™ : n > 0} is not regular. To see this consider, distinct natural numbers n and m.
Since b" € Suff(a”, L) \ Suff(a™, L), a™ +#1, ™. Thus, ~, has infinitely many equivalence
classes and so L cannot be regular.

Many texts, in place of the Myhill-Nerode theorem, prove a weaker statement called the
pumping lemma. For completeness, and because it will feature again in the next set of
languages we consider here’s that result:

Theorem 4.1 (Pumping lemma for regular languages). Let L be a reqular language. There
is a positive integer k such that if w € L and |w| > k then there are x,u,y € ¥* with w = zuy,
|z| + |u| < k, u # €, and for all non-negative integers n, zu"y € L.

That is, for any sufficiently long word in a regular language we can find a non-empty
segment in the middle that can be “pumped” an arbitrary number of times (including
removing it entirely) while remaining in the language.

Proof. Choose k to be any positive integer greater than the number of ~-equivalence
classes. Consider the first k prefixes of w. Two of them, say x and zu belong to the same
~r-equivalence class. Write w = zuy. Since uy € Suff(z, L) and Suff(z, L) = Suff(zu, L),
uy € Suff(zu, L), ie., xu’y € L. Inductively, zu™y € L for all n > 0. But also y €
Suff(zu, L) = Suff(x, L) so xy € L which completes the result. O

Let’s use the pumping lemma to reprove that L = {a"b" : n > 0} is not regular. Suppose
it were, and choose k as guaranteed by the pumping lemma. Consider w = akfvk. The

3

COSC 341 Notes: 6 Not regular languages

appropriate and u would have to consist entirely of a’s (and u is non-empty). But
then deleting u (or adding any number of new copies) destroys the balance between the
number of a’s and the number of b’s.

Why do I (strongly) prefer the Myhill-Nerode theorem to the pumping lemma? For sev-
eral reasons — the theorem really is “about” automata and provides both a necessary and
a sufficient condition for regularity. On the other hand the pumping lemma is just “one
weird trick”. It can only be used to prove that a language is not regular, and the proof
technique needed is always proof by contradiction. Finally, if we look again at the proof
of the Myhill-Nerode theorem we will discover a fascinating idea about how to discover
the smallest possible DFA to recognise a language. That’s the topic of the next section.

5 DFA minimisation

Let L be any regular language and let M be any DFA that recognises L. The proof of the
Myhill-Nerode theorem implies that A/ must have at least as many states as the num-
ber of equivalence classes of ~,. Since every state of a DFA can be associated with the
suffix language it accepts, and since the transitions between suffix languages are fixed, it
also shows that there is a unique minimal automaton recognising L having exactly that
number of states.

But what if we are just given M? Is there a mechanism for efficiently constructing the
minimal DFA accepting the same language as L does? Indeed there is, in fact there are
several. I'm going to concentrate on one, Moore’s algorithm.

In Moore’s algorithm, prior to completion, we will have constructed an equivalence rela-
tion (or partition), ~ on the states of the automaton that is (or might be) coarser than ~..
Here we mean by ~, the relation on states that holds if the languages accepted from those
states are the same (which corresponds to the ~, relation on words that get us to those
states). That means that if two states are ~r-equivalent then they will be guaranteed to
be ~-equivalent, but there might be ~-equivalent states that are not ~-equivalent. We
will check this and, if necessary refine the relation ~ until we’re sure that it agrees with
~7,.

To carry out the refinement procedure we look at each ~-equivalence class and, for each

https://en.wikipedia.org/wiki/DFA_minimization#Moore's_algorithm

COSC 341 Notes: 6 Not regular languages

element, ¢, of that class, and each letter, a, of ¥ determine the ~-equivalence class of
T(q,a). We associate to ¢ the ordered tuple consisting of those classes. Now we break
up the ~-equivalence class into smaller ones determined by those tuples. That is, if the
tuples for g and r are the same, they remain ~-equivalent, while if they differ, they are no
longer ~-equivalent.

The algorithm terminates when no equivalence class gets broken up (i.e., all the tuples
are the same within every equivalence class).

We have as an invariant that two states which are not ~-equivalent cannot be ~, equiv-
alent (i.e., they have different associated suffix languages). This invariant is preserved
by the refinement procedure since splitting two states ¢ and r in the refinement implies
that for some letter a, T'(¢q, a) and T'(r, a) are not ~-equivalent, hence have different suffix
languages. But then the part of ¢’s suffix language consisting of words beginning with a
is different from that of r, and hence the suffix language of ¢ and r are not the same.

How does the algorithm begin? Well, there are two types of states that we know have
different suffix languages without any further information: the accepting states (their
suffix language includes €) and the non-accepting states (their suffix language doesn’t).
So, that’s what we take to be the initial ~ relation.

How can we be sure that when the procedure terminates ~ and ~ will be the same re-
lation? Suppose they were not. Since our invariant guarantees that ~-equivalent states
are ~-equivalent it must be that there are two states ¢ and r that are ~-equivalent but not
~r-equivalent. Without loss of generality, g accepts some word w = wow; ... wi_ that r
rejects. Certainly w couldn’t be the empty word otherwise ¢ and 7 are not even initially
~-equivalent. Now ¢; = T'(q,wo) and 1 = T'(r, wp) must be ~-equivalent, otherwise ¢
would have been split from r. But ¢; accepts wy ... w,_1 and 1 doesn’t. So we can con-
tinue this procedure finding that ¢o = 7'(¢1, w1) and ro = T'(r1, w1) must be ~-equivalent.
And so on inductively — eventually we find that g, the state we reach from g by process-
ing all of w and 7, the one we reach from r are supposed to be ~-equivalent. But g, is
accepting and 7 is not! So they aren’t! So there’s a contradiction!! And so when the
algorithm terminates, ~ is the same as ~..

Moore’s algorithm is not just theoretically interesting, it’s actually quite practical. How-

7 hope you appreciate how exciting this is!

COSC 341 Notes: 6 Not regular languages

ever, Hopcroft’s algorithm has better performance guarantees. The reason for these is
that it changes how the refinement part of the algorithm works. Underlying Hopcroft’s
algorithm is a current equivalence relation =~ that is coarser than ~, and a collection of
~-classes that I'll call the splitters. Initially, as in Moore’s algorithm ~ just has two classes
- the accepting and non-accepting states, and both these classes are splitters.

Now, so long as the collection of splitters is not empty, we take one, B, and then check
for each current ~-class A and each letter a whether the images of A under a are split by
B. In the event that they are split, we refine the ~-relation so that A is split into its two
parts A; (say elements that are taken into B on an a-transition) and A, (elements that are
taken elsewhere). Then, we might think we need to add both the newly-created classes as
possible splitters for later, but it turns out this is only necessary if A was already in the list
of splitters prior to this step (and in that case, we can replace A in the list of splitters by
both A; and A,). Otherwise, it suffices to add the smaller of the two classes as a potential
splitter.

Using the partition refinement data structure (which is a dual version of the union find data
structure) Hopcroft’s algorithm can be implemented with a run-time bound of O(n|X| log n)
where n is the number of states of the original automaton). Since the space requirement
for even representing such an automaton is ©(n|X|) that’s more than satisfactory.

https://en.wikipedia.org/wiki/DFA_minimization#Hopcroft's_algorithm

	Introduction
	[thevalue=N06:1]suffix-language
	The [thevalue=N06:1]Myhill-Nerode-theorem
	Non-regular languages
	[thevalue=N06:4:4]dfa-minimisation

