
COSC 341 Notes: 7 Not regular languages

1 Introduction

Up to now I’ve been taking it as a given that ‘recognising a language’ is a reasonable
proxy for ‘doing computation’. This is not really a technical point – after all we’re free to
make what definitions we like, but it’s probably sensible to make some sort of a reason-
ableness argument for it, and to explore the consequences of it.

2 Computing the square root of 2

The problem: compute the square root of 2 is certainly a computational problem. How does
it correspond to a problem of language recognition?

A natural response to being asked to compute
√
2 is to ask: how accurately? That is, we

recognise that the answer is in the form of a string of some length. So, it’s easy enough
to associate a language to this: the language consisting of all finite strings that represent√
2 to k digits of accuracy, for any positive integer k, i.e., the language consisting of:

1, 1.4, 1.414, 1.4142, ...

I don’t care whether you want them truncated or rounded - that’s just a detail, it’s still a
language.

But that’s a real straw man since we’d normally think of ‘computing square roots’ as the
computational problem, rather than ‘computing a specific square root’.

3 Computing square roots

So now the computational problem is: Given a number, compute its square root. Again, we
have to add the caveat to any desired degree of accuracy.

But this is just as easy as a language recognition problem – we take our inputs to be
like the buttons on a calculator, i.e., digits (possibly a single decimal point), followed by
a square root button. But then, rather than seeing the output on the machine, we just
continue with the string representing the answer. So, using S for the ‘square root button’

1



COSC 341 Notes: 7 Not regular languages

the language we’re interested in contains strings like this:

4S 2
4 . 0S 2 . 0 0 0
2S 1 . 4 1 4 2

but presumably not strings like this

4S 2S
4S 3

2S 1 . 4 1 4 3

I think it’s easy to see how this argument extends to cover numerical computation more
generally. Indeed almost anything of the what is the answer to this question variety fits this
model as the language we consider is just a language consisting of strings representing a
valid question, followed by some separator, followed by strings consisting of the answer
to the preceding question.

4 How are things represented?

One thing we do insist on is that our model of computation should be finitistic. That is,
we consider only computational devices that can be described in a finite amount of space
over some finite alphabet, and languages consisting of finite strings over some finite al-
phabet. These alphabets need not be the same. We might well find it convenient to work
with languages over a binary alphabet, and allow much greater latitude in describing our
machines.

5 From integers to strings

Consider the two-character alphabet {0, 1}. Any finite string over this alphabet can be
interpreted as a non-negative integer by just reading it as a binary number. However,
there’s a minor technical issue with this in that all of 0, 00, 000, 0000 would read as 0.
And, what would the empty string read as? So, just to keep things tidy, we could index

2



COSC 341 Notes: 7 Not regular languages

the finite strings over this alphabet by positive integers where the string associated to a
positive integer k is the string obtained by writing k in binary and then adding a leading
1. So now 0 is represented by 102, i.e., 2, while 000 is represented by 10002 i.e., 8, and the
empty string is represented as 12 i.e., 1.

We can do the same thing for any alphabet and will implicitly assume that we have done
so. To be precise, we associate to any alphabet Σ an indexing method such that each
sting w ∈ Σ∗ is associated to a positive integer wΣ in such a way that distinct strings are
associated with distinct integers. In reverse, for each positive integer n there may be (or
may not be) an associated string Σ(n) ∈ Σ∗ such that Σ(n)Σ = n.

6 Not everything is computable

Now we aim to show that in our finitistic model (whatever it might be) that there exist
languages L that are not recognised by any computational device. Let Σ be the alphabet
of our languages, and Γ be the alphabet that we use to represent our machines.

The trick is the same one used by Cantor to establish that there are different types of
infinity (in the context of arguing that there exist infinite sets A and B such that no map
from A to B can cover every element of B), and akin to that of Russell’s paradox which
shows that one cannot legitimately consider things like ‘the set of all sets’.

Our computational devices are represented as strings over Γ. We could also think of
them as being represented by positive integers n – where n represents the device Γ(n)
(for convenience, assume this is always defined so that we don’t have to keep saying
‘whenever this makes sense’).

Each element w ∈ Γ∗ recognises some language that we will denote L(w) which is a
subset of Σ∗. But we could also think of this language as a subset of the positive integers
namely:

N(w) := {n ∈ N : Σ(n) ∈ L(w)}

Now, for a positive integer n consider the question does n belong to N(Γ(n))? This is a
yes/no question about positive integers and so defines a set of positive integers consist-

3



COSC 341 Notes: 7 Not regular languages

ing of those to which the answer is ‘no’. That is, define

L = {n ∈ N : n ̸∈ N(Γ(n))}

I claim this language is not computable, i.e., is not of the form N(w) for any w. For,
suppose that L = N(w). Consider n = wΓ and ask the question: is n in L?

If the answer were yes, then by the definition it would be the case that n ̸∈ N(Γ(n)). But,
Γ(n) = w so N(Γ(n)) = L. That is, the answer would be no! That’s impossible.

On the other hand, if the answer were no, then by the definition it would be the case that
n ∈ N(Γ(n)). But, Γ(n) = w so N(Γ(n)) = L. That is, the answer would be yes! That’s
impossible too.

So we have a contradiction - and the only thing we’ve assumed is that L is a computable
language. Therefore, it isn’t, and uncomputable languages exist.

7 But that’s not fair!

Our description of an uncomputable language essentially required us to consider all com-
puting devices simultaneously. For each n we used a different computing device to de-
termine whether to include n in L or not. That seems unfair.

We’ll need to find a rather more convincing and detailed model of computation to be able
to demonstrate languages that are reasonable to talk about, but which we can show cause
similar paradoxes.

In particular, we’ll need to be able to show that our model includes the possibility of a
universal machine: a single machine/device that can simulate all the others.

4



COSC 341 Notes: 7 Not regular languages

8 Exercises

Some soft questions.

1. Why is the alphabet not really a significant issue?

2. Think about other computational problems and whether or not the language recog-
nition model can be stretched to accommodate them.

3. Why should we be comfortable with the notion of a universal machine?

5


	Introduction
	Computing the square root of 2
	Computing square roots
	How are things represented?
	From integers to strings
	Not everything is computable
	But that’s not fair!
	Exercises

