
COSC 341 Notes: 8 Pushdown automata

1 Introduction

One of the things that limits the power of finite state automata is that they have no dy-
namic memory. All the information they contain must be encoded in the current state,
and this is a static resource. Our next class of machines, the pushdown automata rem-
edy this by adding a single stack to the control structure. It turns out that this is still
quite limiting – the languages accepted by pushdown automata are all context free. A
pumping lemma for context free languages, somewhat more complex than that for regular
languages establishes that while we can now finally recognize the anbn language, we’re
still stuck with anbncn. In a nutshell, the problem is that the stack memory is “use once”
and can’t be refreshed.

2 Definitions

A pushdown automaton is a nondeterministic finite state automaton augmented by a stack.
So its parts are:

Q a finite set of states,
Σ the input alphabet (lower case letters)
Γ the stack alphabet (upper case letters)
δ a transition function
q0 the initial state
F the set of accepting states

Some more details about the transition function – it takes as input the current state, an
input letter (or ϵ) and the stack top letter (or ϵ). It produces as output a set of possibilities
(non determinism) each of which consists of a new state and a new stack top (or ϵ). The
interpretation is: consume the input letter (if any), pop the original stack top (if any),
move to the new state, and push the new stack top (if any).

A computation proceeds in the normal way following various transitions as allowed by
the input (and choosing them arbitrarily if more than one is available). The exact condi-
tions for acceptance are that at the end of the computation no more input should remain,
the stack should be empty, and the state should be an accepting one.

1

COSC 341 Notes: 8 Pushdown automata

Despite their complexity transitions can be represented relatively compactly in diagrams.

0 1

a, ϵ/A

b, ϵ/ϵ

a,A/ϵ

In this machine the three transitions behave as follows:

a ϵ/A read a, ignore the stack top, push A
b ϵ/ϵ read b, leave the stack alone
a A/ϵ read a, pop A from stack top, don’t push

To accept, all the pushes that occur in the left state must match pops in the right state,
so the language accepted by this push down automaton is {anban | n ≥ 0} – certainly a
non-regular language.

3 Facts about push down automata

The use of non-determinism is essential for push down automata to gain power. For
instance consider the language of even length palindromes over {a, b}. This is easily
accepted by a push down automaton:

0 1

a, ϵ/A

b, ϵ/B

ϵ, ϵ/ϵ

a,A/ϵ

b,B/ϵ

But, it’s essential that the machine can “guess” when to stop pushing and start popping.

2

COSC 341 Notes: 8 Pushdown automata

However, the exact acceptance conditions (that the stack be empty and the state is ac-
cepting) can be loosened in either direction. The three obvious possibilities are that we
accept:

• whenever the stack is empty,

• whenever we are in an accepting state, or

• when both the conditions above hold.

Suppose we have a machine of the first type accepting a particular language L. To pro-
duce one of the (second or) third type accepting the same language we can modify it as
follows:

• Before normal operations begin push a stack-bottom marker # onto the stack (this
symbol is not to be used for any other purpose).

• From every state add a transition that says “if the stack top is #, pop it (consuming
no input) and move to an accepting state called END”.

• Add no transitions out of END.

So, whenever the first machine would have allowed acceptance, we can choose to accept
with this new machine. Conversely, any acceptance with the new machine can only occur
from a situation where the old machine would have accepted. That is, they accept the
same language.

Similar constructions can be used to show that all three types of rules give us the same
family of accepted languages. For example, given a machine of the second type, do the
same stack bottom trick but now also add a transition (consuming no input) from any
accepting state to a CLEAR-STACK state that just pops away any remaining contents of
the stack. Or, given a machine of the third type convert it to one of the first type by
adding the stack bottom marker again and then only allowing the stack bottom marker
to be popped if we are in an accepting state.

3

COSC 341 Notes: 8 Pushdown automata

By the way, this trick of using a new symbol as some sort of special marker to guide
the operation is quite a common one when trying to make modifications of machines in
general.

A context-free grammar is a grammar whose production rules are of the form:

⟨non-terminal⟩ → any-word in terminals and non-terminals

A context-free grammar produces the language consisting of all words in the terminal
symbols that can be produced from the starting non-terminal by repeated application
of the rules. To apply a rule to a word we replace any one of its non-terminals by the
right-hand side of some rule for which it is the left-hand side.

For instance, the following grammar defines even-length palindromes over {a, b}:

S → ϵ

S → aSa

S → bSb

The following result is important, but the proof is technical and uninspiring.

Theorem 3.1. The languages accepted by push down automata are precisely the languages that
have context free grammars.

To be fair, the direction that says “given a context-free grammar there is a pushdown
automaton that accepts it” is fairly natural. Basically we view the non-terminals and ter-
minals as stack symbols. We have push operations (consuming no input) corresponding
to each derivation rule i.e., “if the stack top is a given non-terminal, pop it, and then push
the right hand side onto the stack so that the leftmost symbol winds up on top”. Then we
also have pop operations of the form “if the stack top is a terminal x, you can pop it on
input x”.

4 Pumping lemma for context-free languages

For a change, theorem first, then proof as is more traditional.

4

COSC 341 Notes: 8 Pushdown automata

Theorem 4.1. Let L be a context free language. There is a positive integer k such that for all
z ∈ L with |z| ≥ k we can write z = uvwxy such that:

|vwx| ≤ k
|v|+ |x| > 0

uviwxiy ∈ L for all i ≥ 0.

This looks rather like the pumping lemma for regular languages except we need to split
the part that is to be pumped into two pieces. The proof will also make use of the “re-
peated configuration” idea, except in the derivation tree of a word.

Choose a grammar for L. We can modify it if necessary to ensure that when we have
a derivation tree every node gets developed into a non-empty word1. The first part of
this modification is simply to delete references to any non-terminal that must be devel-
oped into an empty word. We continue by checking which remaining non-terminals are
nullable meaning the could be developed into ϵ either directly or recursively. The most im-
mediate case is something like a non-terminal X that has multiple rules including X → ϵ,
but we might also have a rule like Z → XY and if both X and Y are nullable then so is
Z.

For each rule which contains one or more nullable non-terminals on the right hand side
replace it by a family of rules where we delete each possible subset of the nullables (so
long as something is left of the rule). Finally, delete all direct rules of the form X → ϵ.

For example if we had a rule S → XaY where both X and Y are nullable, then we would
replace it by the rules S → XaY , S → aY , S → Xa, and S → a.

Proof. Each rule is of the form:
A → B1B2 . . . Bt

where the Bi are either terminals or non-terminals. Let m be the maximum length of the
right hand side of a rule, and let j be the total number of non-terminal letters. Choose
k = mj+1.

1We could do more, specifically assume that the grammar is in Chomsky normal form but for our pur-
poses this modification suffices.

5

https://en.wikipedia.org/wiki/Chomsky_normal_form

COSC 341 Notes: 8 Pushdown automata

Let z ∈ L be given with |z| > k. Since the maximum possible branching factor in its
derivation tree is m, the depth of the tree must be greater than j + 1. So, some branch
of the tree has at least j + 1 internal nodes. Since these are labelled with non-terminals,
there is a repeated label on this branch. In fact there is a repeated label among the last
j + 1 internal nodes of this branch. This gives us the situation pictured below:

S

A

A

u v w x y

Now the theorem follows because we can either replace the top A with the bottom one,
eliminating v and x, or the bottom one with a duplicate of the top one which gives us an
extra repetition of v and x – and this latter construction can be repeated as often as we
like.

As with the pumping lemma for regular languages, this pumping lemma is used to prove
that certain languages are not context free. For example, consider the language:

L = {anbncn | n ≥ 0}.

6

COSC 341 Notes: 8 Pushdown automata

We will show that this is not context free by contradicting the pumping lemma. So, sup-
pose it were context free and choose k as given by the pumping lemma. Let w = akbkck

and factor w = uvwxy as guaranteed by the pumping lemma. Since |vwx| ≤ k the sub-
string vwx contains at most two out of the three characters a, b, and c. But in that case in
uv2wx2y at least one character occurs exactly k times (one that doesn’t belong to vwx)
while some other character occurs more than k times (one that does belong to vwx).
Hence, uv2wx2y ̸∈ L and we have our desired contradiction. So, L cannot be context
free.

5 Closure properties for context free languages

The following result is relatively easy to prove either by the manipulation of grammars
or of push down automata.

Theorem 5.1. Let L1 and L2 be context free languages, and let R be a regular language. The
following languages are all context free: L1 ∪ L2, L1L2, L∗

1, and L1 ∩R.

However, the intersection of two context free languages is not necessarily context free:

{anbnck | n ≥ 0, k ≥ 0} ∩ {anbkck | n ≥ 0, k ≥ 0} = {anbncn | n ≥ 0}.

Therefore, the complement of a context free language need not be context free either (if it
were, then because unions are, intersections would be too).

7

COSC 341 Notes: 8 Pushdown automata

6 Tutorial problems

1. Build a PDA to accept each of the following languages:

(a) Equal, the set of strings having the same number of a’s as b’s in any order.

(b) {anbncm |n,m ≥ 0}.

(c) BalancedParentheses, the set of strings over {(,), a, b} in which the parentheses
are properly balanced (and the other symbols can occur arbitrarily).

(d) (*) PostFix, the set of strings over {a, b,+,−} that represent legitimate expres-
sions written in postfix notation, where + is a binary operator, and − a unary
operator.
Briefly, a and b represent values and + and − represent operators. There is
a stack to hold values – any input which is a value is pushed onto the stack.
Any input which is an operator, causes either one (in the case of −) or two (for
+) values to be popped off the stack – the operator is applied, and the result is
pushed back on to the stack. Since we aren’t really computing anything for this
exercise, this can be simulated by just modifying the stack size appropriately.
An expression is legitimate if there are always enough symbols in the stack for
any operator that arrives, and after processing it completely, there is exactly
one symbol in the stack.

2. Apply the pumping lemma and write out detailed arguments showing that the
following languages are not context-free:

(a) {anbmanbm |n,m ≥ 0}.

(b) {ap | p is prime}.

(c) {anbnan |n ≥ 0}.

3. Show, by intersection with a suitable regular language and deriving a contradiction,
that Square, the set of all words of the form ww, where w ∈ {a, b}∗ is not context-free.
(NB – look up the page . . .)

8

	Introduction
	Definitions
	Facts about push down automata
	[thevalue=N08:4:4]pumping-lemma-for-context-free-languages
	[thevalue=N08:7]closure-property for context free languages
	Tutorial problems

