
COSC 341 Notes: 11 Enhanced Turing Machines

1 Introduction

To try and justify the claim that TMs may represent a correct, or perhaps better, appropri-
ate, model of computation it makes sense to consider what happens when their capacity
is enhanced in various ways. We will be able to show that none of the enhancements
actually change the languages we can recognise, or the functions that we can compute
and this is further evidence of the appropriateness of the model.

This is actually helpful in at least two ways:

• To show that a problem is mechanically solvable we can use a more powerful and
convenient extended machine; and

• To show that a problem is not mechanically solvable we can restrict ourselves to
ordinary TMs.

2 Multi-track machines

In a multi-track Turing machine, instead of one tape we have several. There is still a
single read-write head which simultaneously reads aligned symbols on the various tapes
(and can write on them all, before moving in the same direction on all of them).

But, thinking of the column of letters that the read-write head sees as a single letter we
see that this is really just an ordinary TM with an expanded alphabet (Γk where k is the
number of tracks instead of Γ). So, adding multiple tracks does not change the power of
a TM.

3 Two-way tapes

In a two-way tape machine we assume that the tape is infinite in both directions (i.e. the
tape cells can be indexed by integers rather than by natural numbers).

Given a two-way tape machine, imagine wrapping the tape around (duplicating the 0
cell) so that cell -1 lies above cell 1, cell -2 above cell 2 and so on. The extra copy of the 0

1



COSC 341 Notes: 11 Enhanced Turing Machines

cell (in the upper tape) has a special symbol # written on it. Now simulate the original
machine by a new two track machine here by duplicating each state q of the original into
a pair qupper and qlower. Then each transition of the original machine can be transformed
into transitions of the new one. For instance if we have a transition between q and s that
reads a, writes b and moves left, it becomes:

State Read Write Move New state
qlower ax bx L slower

qlower a# b# R supper

qupper xa xb R supper

For each possible symbol x on the other tape.

This transformation shows the general strategy we need to pursue – take an instance of
the more powerful machine and show how to build one of a simpler type whose compu-
tations simulate it.

4 Multi-tape machines

In a multi-tape Turing machine we again have a number of separate tapes. Each tape has
its own read-write head and these can move independently of one another (or indeed
stay in place). Transitions are based on the complete sequence of symbols read at any one
time, as well as the current state – that is, there is one central control unit which takes
charge of all the different heads simultaneously.

Simulating this using a multi-track machine is a little bit complicated. Suppose that there
are k tapes. We will use 2k + 1 tracks. One of these is pretty much for decoration. It has
a # in the leftmost cell and nothing else. Its only purpose is to allow us to reliably wind
the head back to the leftmost cell.

For each of the k tapes of the multi-tape machine we dedicate two tracks. One of these
contains the actual contents of the tape. The other contains a single symbol M which
marks where the ‘virtual’ version of the read-write head for that tape is currently located.

Now the simulation of a single transition in the multi-tape machine requires a long se-
quence of operations in the multi-track machine. We always assume that the read-write
head begins at the leftmost cell. One by one we advance to the various marked cells and

2



COSC 341 Notes: 11 Enhanced Turing Machines

determine the symbols on each ‘virtual’ tape, storing these by means of state (this is pos-
sible because there are only finitely many possibilities for the symbols we see). Then we
rewind back to the left again. Now we determine what should be written on each tape
and which way its head should be moved (by means of the original transition table in the
multi tape machine). Again, we advance to each of the marks, change the symbol on the
virtual copy, and move the mark as necessary. When all this is done, we go back to the
left (remembering the new state), and start again.

5 Non-determinism

Non-determinism in TMs comes in two apparently different flavours.

The first, non-determinism by transition (NDT for local reference) is just like non-determinism
in finite state or push down automata. That is, given a current state, and a current symbol,
there may be more than one possibility for the read-write action, movement direction, or
resulting state. Basically our machine is ‘loose’ and might take one of several actions in
certain configurations. An input word w is accepted by such a machine if some choice of
those actions results in an accepting computation.

The second, non-determinism by oracle (NDO) introduces a new idea. We imagine a
standard two tape deterministic TM. One tape is called the input tape and on it we write
the input word w that we wish to process. The other is called the oracle tape. Just before
setting the computation in motion we summon a genie and say ‘Oh most clever and
puissant genie, it would be our dearest wish if you would be so kind as to write upon
this second tape some helpful guidance for our computation’. Since we were so polite1,
the genie then writes some information on the oracle tape. We then run the machine and
accept w if it halts in an accepting state. Since we don’t entirely trust the genie it is our
responsibility to have designed the machine in such a way that the set of words we want
to accept is precisely the set of words that will be accepted for some string on the oracle
tape. That is, while the genie can ensure that we accept the words we want, we can never
be tricked into accepting a word that we don’t want.

Despite their apparent differences, these two models accept the same languages – which

1For reasons that should be obvious, it is always advisable to be polite to powerful supernatural entities.

3



COSC 341 Notes: 11 Enhanced Turing Machines

is useful as the second one is much easier to work with in a theoretical context (as well as
allowing for all sorts of clever variations where we might restrict access to the oracle tape
in some way, or the types of sequences that can be written on it, . . . )

Theorem 5.1. If a language, L, is accepted by an NDT Turing machine, T , then it is accepted by
an NDO Turing machine O and vice versa.

Proof. Suppose first that L is accepted by an NDT machine T . Create a two track machine
O where on the oracle track the head always moves one place to the right with each
transition. Let m be the maximum degree of non-determinism in T (i.e. the maximum
number of transitions associated with a single state-symbol pair) and take the alphabet
of the oracle track to be {1, 2, . . . ,m}. Now simply make each of the non deterministic
transitions deterministic by indexing them from 1 to (at most) m, using the contents of the
oracle tape to justify the choice. Given an acceptable word w, the genie simply chooses
an accepting computation in T and writes the appropriate indices on the oracle tape
meaning that O accepts w. However, whatever the genie writes on the oracle tape leads
to some computation path in T , so we can never be forced to accept a word that T does
not accept.

Now suppose that L is accepted by an NDO machine O. We may assume that O works as
in the previous paragraph (i.e. each step advances the read-write head on the oracle tape
one step to the right). This is because the contents of the oracle tape are completely under
the genie’s control. While it might be more convenient to allow any sort of movement on
that tape, it can’t hurt to simply write out in order all the symbols that will ever be seen
there instead (and for a powerful genie, questions of convenience don’t really enter into
it). Now we produce our NDT T simply by the reverse of the preceding construction –
just erase all references to the second tape from the transitions. If T accepts a word w
then we can choose an accepting computation, ‘remember’ which transitions involving
the oracle tape were used, and construct an input sequence for the oracle tape that shows
that O accepts w. On the other hand if O accepts w then we can just ignore the oracle tape
and ‘see’ an accepting computation of T on w. So, T and O accept the same language.

4



COSC 341 Notes: 11 Enhanced Turing Machines

6 Non-determinism doesn’t help!

Despite the power that non-determinism seems to give us, it doesn’t actually change
anything!

Theorem 6.1. If a language, L, is accepted by a non-deterministic Turing machine then it is also
accepted by a deterministic Turing machine.

Proof. Suppose that L is accepted by an NDO, O. To show that L is accepted by a de-
terministic TM it’s enough to show that it’s accepted by a deterministic multi-tape TM
since we know we can simulate a multi-tape TM in a single-tape TM. Our multi-tape
TM will have the following four tapes (and possibly some additional working tapes for
convenience):

• The input tape (i.e., the main tape of O)

• An “input copy” tape

• A “simulated oracle” tape

• A “timer” tape, initialised to 1.

The operation is as follows: if the timer is set to k then we simulate the operation of O
under every possible string on the oracle tape of length ⩽ k, running for k steps. After
each simulation, use the input copy to restore the input tape to its original form (you
may need to include a marker on the main tape that records the rightmost position ever
reached – or just agree that you’re not allowed to write “real” blanks on the tape). If any
simulation ever accepts we halt and accept. If we finish all simulations with the timer at
k without accepting, we increment the timer by 1 and start again.

Obviously, if there’s no accepting computation then we won’t accept here either. But if
there is an accepting computation then we’ll wind up accepting when we reach round
k with k being the maximum of the size of the oracle tape required and the number of
computational steps required (in fact, since we examine at most one cell on the oracle
tape per step, only the number of computational steps matters).

5



COSC 341 Notes: 11 Enhanced Turing Machines

There’s plenty of book-keeping to do and it’s wildly inefficient but eventually, if there is
some accepting computation in O which requires say s steps then we will get around to
simulating it and accept. If there’s no accepting computation for O then, since all we’re
doing is simulating computations in O, we won’t accept either.

6



COSC 341 Notes: 11 Enhanced Turing Machines

7 Exercises

Use multiple tracks, tapes, or other variations on the Turing theme to find machines that
accept the following languages (or compute certain functions). Again, worry more about
the high level description, and understanding how, while these variations may improve
efficiency, their computations could all be accomplished by a standard TM

1. Compute the nth Fibonacci number fn (i.e. on input an, arrange that afn is written
on a working tape). Take f0 = f1 = 1 and for n > 1, fn = fn−1 + fn−2.

2. Convert binary numbers to unary. That is, on input w ∈ {0, 1}∗ arrange output on
a working tape of an where n is the value of w interpreted as a binary number.

3. Convert unary numbers to binary ones.

4. Accept the language L = {ap | p is prime}.

• Think about the standard loop version “for each 2 ≤ i < p check whether the
remainder when p divided by i is 0. If so, reject. If all these tests succeed,
accept.

• There is an improvement to this method where you only look at i ≤ √
p since

if a number is composite it has a proper factor less than or equal to its square
root – how might that be implemented?

• Does using non-determinism seem to help for this problem? What about for
the complement of L, i.e. the set of strings an where n is composite?

7


	Introduction
	Multi-track machines
	Two-way tapes
	Multi-tape machines
	Non-determinism
	Non-determinism doesn't help!
	Exercises

