
COSC 341 Notes: 15 Polynomial reductions and graphs

1 Introduction

Just as it was for decidability, reducibility is a key idea in analysing efficiency. In the con-
text of efficiency rather than computability, reduction of instances of PROB1 to instances
of PROB2 means that if we can solve PROB2 efficiently, then we can also solve PROB1 ef-
ficiently. Fundamentally this means that the reduction must preserve the “type” of each
instance (i.e., whether the answer should be “yes” or “no”) and the reduction itself must
be an efficient procedure.

Before formalising that though, let’s look at a few more examples of problems.

2 Problems on graphs

A particularly rich source of interesting algorithmic problems come from graphs. Recall
that, for our purposes, a (simple) graph, G, consists of a set, V of vertices, and a set E of
edges, each of which is an unordered pair of distinct elements of V . The elements of an
edge are called its endpoints and if two vertices are the endpoints of an edge they are said
to be adjacent.

Note that to represent a graph having n vertices requires listing the set of edges. How-
ever, there are at most n(n − 1)/2 edges and so the total amount of space required to
describe a graph with n vertices is O(n2).

• An independent set in a graph is a subset, I ⊆ V , such that no pair {v, w} with
v, w ∈ I is an edge.

• A clique in a graph is a subset, K ⊆ V , such that every pair {v, w} with v, w ∈ I is
an edge.

• A walk in a graph is a sequence v0, v1, . . . , vk of vertices such that each pair {vi, vi+1}
for 0 ⩽ i < k is an edge. The length of a walk is the number of edges it traverses (i.e.,
k, one less than the number of vertices). A path is a walk containing no repeated
vertices.

1



COSC 341 Notes: 15 Polynomial reductions and graphs

• A cycle in a graph is a walk v0, v1, . . . , vk with v0 = vk and containing no other
repeated vertices

• A k-colouring of a graph is a function c : V → {1, 2, . . . , k} with the property that
for each edge e = {v, w}, c(v) ̸= c(w). That is, the endpoints of each edge get
different colours.

Graphs (and small variations on the same theme) are flexible and ubiquitous models
that arise in all sorts of situations. They also have lots of naturally associated decision
problems. For instance:

INDEPENDENT-SET

Instance: A graph G and a positive integer k
Problem: Is there an independent set in G having (at least) k elements?

CLIQUE

Instance: A graph G and a positive integer k
Problem: Is there a clique in G having (at least) k elements?

HAS-PATH

Instance: A graph G and a pair of vertices v, w ∈ G
Problem: Is there a path in G from v to w?

IS-CONNECTED

Instance: A graph G
Problem: Is the graph G connected, i.e., is there a walk in G between any two vertices?

HAS-CYCLE

Instance: A graph G
Problem: Is there a proper cycle in G?

HAMILTON-CYCLE

Instance: A graph G
Problem: Is there a cycle in G that visits every vertex?

HAMILTON-PATH

Instance: A graph G
Problem: Is there a path in G that visits every vertex?

2



COSC 341 Notes: 15 Polynomial reductions and graphs

k-COLOURING

Instance: A graph G
Problem: Is there a k-colouring of G?

Why not include k as a parameter in the last problem, i.e., as part of the instance? Well,
we could, but we have our reasons.

Some of these problems are (or seem to be) hard, while others are easier. Perhaps you
remember which are which from COSC 201?

In fact, all of HAS-PATH, IS-CONNECTED, HAS-CYCLE, and 2-COLOURING are in P. As
for the rest . . .

3 Polynomial-time reducibility

How can we compare the difficulty of problems that might or might not be in P (or NP)?
We can modify the idea of Turing-reducibility that we used to show that certain problems
were undecidable (because if we could decide them we could decide HALT) in a way that
incorporates the time limits that P or NP impose.

A polynomial-time reduction of PROB to L is an algorithm for converting instances of PROB

to words in Σ∗ such that the time required for the conversion is bounded by a polynomial
and such that all affirmative instances of PROB are converted to elements of L while
negative instances are converted to elements not in L.

Let’s consider some polynomial-time reductions. First a pretty trivial one:

Claim. There is a polynomial-time reduction from INDEPENDENT SET to CLIQUE

We need to show how to convert instances of INDEPENDENT SET to instances of CLIQUE.
An instance of INDEPENDENT SET is a pair (G, k) consisting of a graph and a positive
integer. We can define a graph Ḡ which has the same vertices of G but such that every
edge of G is a non-edge in Ḡ and vice versa. But independent sets in G become cliques
in Ḡ so (G, k) is a positive instance for INDEPENDENT SET if and only if (Ḡ, k) is a pos-
itive instance for CLIQUE. Since the transformation G → Ḡ is easily accomplished in
polynomial-time, this gives the required reduction.

3



COSC 341 Notes: 15 Polynomial reductions and graphs

The point here is that in some sense independent sets and cliques are just two versions of
the same thing (switching the notion of edges and non-edges).

Claim. There is a polynomial-time reduction from k-COLOURING to (k+1)-COLOURING

for any positive integer k.

This is a bit trickier. Given G we will define a new graph G+ such that G+ has a (k + 1)-
colouring if and only if G has a k-colouring. The idea is to add one more vertex, adjacent
to every vertex of the original graph. Now if the new graph is (k + 1)-colourable, the
new vertex must be given some colour. But then no other vertex can get that colour since
they’re all adjacent to the new vertex so there are only k colours remaining to colour the
rest of the graph. In other words, just as we require G+ is (k + 1)-colourable if and only
if G is k-colourable.

Let’s do one more.

Claim. There is a polynomial-time reduction from HAMILTON-CYCLE to HAMILTON-
PATH.

This one’s a bit trickier. We want to convert a graph G to a graph G∗ in such a way that
G∗ has a Hamiltonian path if and only if G has a Hamiltonian cycle. Choose any vertex
v of G. If G has a Hamiltonian cycle then any such must pass through v at some point.
Add three new vertices x, y and z. The first, x is adjacent only to v and the second, y is
adjacent only to all the neighbours of v, and the third z is adjacent only to y. That’s the
graph G∗. If G was Hamiltonian, then G∗ has a Hamiltonian path – from x to v, around
the cycle until you’re just about to return to v and thence to y and on to z. On the other
hand if G∗ has a Hamiltonian path, then since x and z have only a single neighbour each
it must start at one (say x – it doesn’t matter) and finish at z. The second last vertex before
z must be y and the one before that must be a neighbour, w, of v. Now follow the same
path in G except ignore the xv start, and when you get to w go on to v. That’s a Hamilton
cycle in G.

There’s an easier way to do this if we allow a more complicated notion of reducibility.
Consider the set of graphs we can build from a graph G by “splitting” each edge. That is,
for each edge e = {v, w}, form a new graph Ge that has two additional vertices v′ and w′,
two additional edges {v′, v} and {w′, w} and remove the edge e. Now, if this graph has a

4



COSC 341 Notes: 15 Polynomial reductions and graphs

Hamilton-path it must start at v′ and end at w′ (or vice-versa). But, this can happen only
if G had a Hamilton cycle using the edge e. So here we haven’t reduced one instance of
HAMILTON CYCLE to one instance of HAMILTON PATH, but rather to polynomially many
instances in such a way that if any one of them is affirmative then so was the original,
and otherwise not.

This last is an instance of what’s called a truth-table reduction, rather than a many-one
reduction which is the one we introduced earlier (also called a Karp reduction). There
is an even more general notion of reduction called a Cook reduction. See the wikipedia
page on polynomial-time reduction (and links therein) for more details. For any of these
reductions we have:

Theorem 3.1. If there is a polynomial-time reduction from PROBA to PROBB and PROBB be-
longs to P (respectively NP), then PROBA belongs to P (resp. NP).

The “proof” is “to solve a problem from PROBA use the polynomial-time reduction
to produce an instance (or instances) of problem(s) in PROBB and then use the (non-
deterministic) polynomial-time algorithm available to solve it (those).”

4 NP-hard

Suppose we could find some problem REALLYHARD which had the property that for
every problem, PROB in NP there was a polynomial-time reduction from PROB to RE-
ALLYHARD. Then, that says REALLYHARD is a really hard problem, since any efficient
algorithm for solving it would resolve every problem in NP. We say that such problems
are NP-hard. If, in addition, they happen to belong to NP, then we say they’re NP-
complete.

Conversely, any reduction of REALLYHARD to some other problem also shows that other
problem must be really hard.

Problem: Do such languages exist?

Answer: YES! And much more – many natural problems in optimisation and search are NP-
complete. For example, FAIR-DIVISION is such a problem, as are all the graph problems
listed above except HAS-PATH, HAS-CYCLE, IS-CONNECTED and 2-COLOURING.

5

https://en.wikipedia.org/wiki/Polynomial-time_reduction


COSC 341 Notes: 15 Polynomial reductions and graphs

5 Tutorial problems

0. Draw some graphs. Make sure you’re happy with notions like walk, path, cycle etc.

1. What is the least number of edges that a connected graph with n vertices can have?

2. (*) What is the greatest number of edges that a graph on n vertices containing no
triangle (clique of size 3) can have?

3. Show that in a graph G if there is a walk from v to w then there is also a path from
v to w.

4. Find a graph with five vertices that has no clique nor independent set of size 3. Doe
such a graph exist with six vertices?

5. Suppose that we have a polynomial-time reduction from PROB1 to PROB2.

(a) If the time required to convert an instance of size n is bounded by n4, then how
large an instance of PROB2 might we get from an instance of size n for PROB1?

(b) If PROB2 ∈ P and the time required to resolve an instance of size n of PROB2
is bounded by n3, what is an upper bound for the time required to resolve an
instance of PROB1 through the reduction?

6. Confirm that HAS-PATH, IS-CONNECTED, HAS-CYCLE, and 2-COLOURING are in
P.

6


	Introduction
	Problems on graphs
	Polynomial-time reducibility
	NP-hard
	Tutorial problems

