
COSC 341 Notes: 16 Propositional logic and satisfiability

1 Introduction

The next objective of our development will be to find a single concrete problem that
we can show is NP-complete. Once we have that, then we can use the mechanisms
of reducibility to show many other problems are NP-complete (by reducing the initial
example to them).

The issue is that getting the ball rolling is a little tough since the first time around we have
to show that every problem in NP can be reduced to the problem that we’re considering.
That problem is going to be SATISFIABILITY or, as it is usually known, SAT. So let’s begin
by introducing that.

2 Propositional Logic

In order to define SAT we need to (re?)-introduce some basic terminology from proposi-
tional logic.

A Boolean variable x is a variable that takes on values t or f (for true and false, obviously).
There are a number of operations defined on Boolean variables to form Boolean-valued
expressions. So, in the following x and y might refer to variables or more complex expres-
sions (defined recursively in the usual way).

Negation of Boolean-valued expressions

x ¬x
t f
f t

Disjunction of Boolean valued expressions:

x y x ∨ y

t t t
t f t
f t t
f f f

1



COSC 341 Notes: 16 Propositional logic and satisfiability

Conjunction of Boolean valued expressions:

x y x ∧ y

t t t
t f f
f t f
f f f

A clause is a disjunction of Boolean variables and negated Boolean variables.

A formula in conjunctive normal form (CNF) is a conjunction of clauses.

A truth assignment for a set of Boolean variables V is a map:

V → {t, f}.

A formula is satisfiable if it evaluates to t for some truth assignment.

Two formulas over the same set of variables are equivalent if, for any truth assignment of
the variables, their values are the same. There are a number of basic equivalences that
are easily checked using truth-tables (left for the tutorial problems). These include the
distributive laws and DeMorgan’s laws:

a ∧ (b ∨ c) is equivalent to (a ∧ b) ∨ (a ∧ c),

a ∨ (b ∧ c) is equivalent to (a ∨ b) ∧ (a ∨ c),

¬(a ∨ b) is equivalent to ¬a ∧ ¬b,
¬(a ∧ b) is equivalent to ¬a ∨ ¬b.

Using these, one can show that every Boolean formula is equivalent to one in conjunctive
normal form (also left for the tutorial problems). However, the size of the CNF-formula
can be exponentially larger than the original.

3 Satisfiability

Recall that our aim is to find a single concrete example of an NP-complete problem.
Once we’ve got that, we can hope to construct a catalogue of NP-complete problems by

2



COSC 341 Notes: 16 Propositional logic and satisfiability

finding other problems in NP that it reduces to. That problem is:

SATISFIABILITY or SAT

Instance: A CNF-formula over a set of variables V .
Problem: Does the formula have a satisfying assignment?

Let’s begin by convincing ourselves that SAT is in NP. First of all, how do we represent
instances of SAT in a Turing machine? I’ll do this in relatively fine-grained detail, but it
should be clear – we could imagine doing it in a text file. Perhaps the first line specifies the
number of variables and then each additional line represents a clause of the SAT instance
using the index of the variable to stand for itself and a negative index to stand for the
negated variable. Thus, for instance (with variables x0 through x7):

(x0 ∨ x2 ∨ ¬x6) ∧ (x1 ∨ ¬x3 ∨ x4 ∨ ¬x6) ∧ (x1 ∨ x3 ∨ x5) ∧ (x0 ∨ ¬x7)

would become:

8
0 2 -6
1 -3 4 -6
1 3 5
1 -7

So, how much space do we need to represent an instance of SAT? If there are n possible
variables, then we need O(log n) space to represent a variable. That O can also absorb the
extra space we need for the negative sign, the space between variables, and the line breaks
between clauses. We should never repeat a variable in a clause (since x ∨ x and x are
equivalent) nor include both a variable and its negation in a clause (since x∨¬x is always
true, so all such clauses are automatically satisfied). So each clause can be represented in
O(n log n) space. Therefore, the total amount of space we need is O(kn log n) where k is
the number of clauses.

The plan for showing that SAT is in NP is simply to have the genie write down n bits on
the oracle tape representing a satisfying assignment if there is one. How long does it take
us to check?

We need to process each line (after the first) of the input file. For each variable index we
see, we need to go look it up on the oracle tape (time O(n)) and if it creates a satisfying

3



COSC 341 Notes: 16 Propositional logic and satisfiability

assignment for this clause we can move on to the next one. If not, we need to look up
the next variable etc. If the clause fails to be satisfied we can terminate (and reject). In
worst case it’s always the last variable on each line that winds up satisfying the clause so
we spend O(n2) time per clause and O(kn2) time in total. Regardless of the relationship
between k and n this is polynomial in the input size since for instance

(kn log n)2 > kn2.

Therefore, the time required to check is at worst quadratic in the size of the input.

So,

Theorem 3.1. SAT is in NP.

Why is it NP-complete? That’s a wee bit harder.

4 Making a plan

Since we already know that SAT is in NP all we need to do now is to prove that it’s NP-
hard. To do this we must establish a polynomial time reduction from any problem in NP
to SAT. That’s a daunting task:

• Where can we start?

• What’s the handle?

• How do we turn the crank?

Let’s look at what we have to work with: a language L ∈ NP (whose decision-problem
we want to reduce to deciding SAT). Since this language is in NP it comes with a non-
deterministic Turing machine M that accepts L and has a time bound Anc for inputs of
length n.

That’s all we know!

4



COSC 341 Notes: 16 Propositional logic and satisfiability

We’re thinking about non-determinism in the “oracle tape” model, the underlying oper-
ation of M is deterministic. It’s just the contents of the oracle tape that are “free”. As M
runs we could imagine taking a snapshot of its configuration at each time step.

What’s a snapshot?

• A record of the position of the read-write heads (main tape, oracle tape)

• The current state

• The complete contents of the tapes

That’s a discrete pile of information which we can take to be of polynomially-bounded
size in the original intput (since we’re only going to have M run for Anc steps we only
need to consider Anc cells on each tape - the rest are inaccessible).

So, we need to describe an encoding of such a snapshot in Boolean variables and also
describe a way to enforce consistency (both of the individual images and the relationships
between them) by means of a CNF-formula of polynomially bounded size.

And that’s what we’ll do next time.

5



COSC 341 Notes: 16 Propositional logic and satisfiability

5 Tutorial problems

1. Which of the following formulas are satisfiable?

(a) (x ∨ y) ∧ (¬x ∨ ¬y)

(b) (x ∨ y) ∧ (¬x ∨ ¬y) ∧ (¬x ∨ y)

(c) (x ∨ y) ∧ (¬x ∨ ¬y) ∧ (¬x ∨ y) ∧ (x ∨ ¬y)

(d) (¬a ∨ b ∨ c) ∧ (a ∨ ¬b) ∧ (a ∨ ¬c)

2. Verify that the following pairs of formulas are equivalent:

(a) a ∧ (b ∨ c) and (a ∧ b) ∨ (a ∧ c),

(b) a ∨ (b ∧ c) and (a ∨ b) ∧ (a ∨ c),

(c) ¬(a ∨ b) and ¬a ∧ ¬b,
(d) ¬(a ∧ b) and ¬a ∨ ¬b.

3. Show that for any Boolean formula Φ(x1, x2, . . . , xk) there is an equivalent formula
Ψ(x1, x2, . . . , xk) in conjunctive normal form.

4. Find a CNF-formula equivalent to

(a ∧ b) ∨ (c ∧ d) ∨ (e ∧ f)

This should suggest why we can have an exponential blow-up in size when we
convert to CNF (though it doesn’t prove it as it stands – that’s a little technical,
since you need to provide a lower bound on the length of the shortest CNF-formula
equivalent to a given formula.

6


