
COSC 341 Notes: 17 Cook-Levin Theorem

1 Introduction

We now want to complete the proof of Cook’s Theorem (or the Cook-Levin theorem -
independently discovered):

Theorem 1.1 (Cook, 1971). SAT is NP-complete

We’ve already established that SAT is in NP, so it remains to show that it’s NP-hard.
As noted previously, our plan to do that is to show how to convert the “movie” that
shows a non-deterministic Turing machine operating for Anc steps into an instance of
SAT by encoding its individual states (and the state of the tape) in boolean variables as
“snapshots” and then linking it all together consistently

What’s a snapshot?

• A record of the position of the read-write heads (main tape, oracle tape)

• The current state

• The complete contents of the tapes

2 Introducing the variables

The parameters of operation for our machine are:

• the current time (an integer, usually denoted t, between 0 and Anc),

• the current state (also an integer, usually denoted q in some bounded range)

• the current location of the read-write heads (two integers between 0 and Anc)

• the current contents of the tapes (one character per possible location per time step)

We’ll capture the time within the variables we use. Each variable will have a name and
some associated parameters. The intended interpretation is that when we make a truth

1

https://en.wikipedia.org/wiki/Cook%E2%80%93Levin_theorem

COSC 341 Notes: 17 Cook-Levin Theorem

assignment, if the value of a variable is t (for true) then the configuration of the machine
at the associated time will have that property. So, our variables will be:

Name Interpretation
STATE(q, t) M is in state q at time t.
M-HEAD(j, t) The read/write head on the main tape is at po-

sition j at time t.
O-HEAD(j, t) The read/write head on the oracle tape is at po-

sition j at time t.
M-SYMBOL(s, j, t) Symbol s is on the main tape at position j at

time t.
O-SYMBOL(s, j, t) Symbol s is on the oracle tape at position j at

time t.
If we observe a computation of M we can make truth assignments to these variables
that correspond to it. For instance, all the variables with time parameter 0 would be
determined by the initial state of the machine, the main input, and whatever the genie
had decided to write on the oracle tape.

Conversely, given an assignment of truth values to all these variables it might represent a
legitimate computation. Our whole goal is to write down a (polynomially-sized) family
of clauses in such a way that any satisfying assignment to the clauses represents a valid
computation that accepts. In that way, we will have produced a polynomial-time reduc-
tion of an instance of problem DECIDE-L (where L is the language accepted by M), i.e.,
“DoesM accept a given word w” into an instance of SAT. Thus, DECIDE-L is polynomial-
time reducible to SAT and, since L could be any language in NP, we conclude that SAT

is NP-hard.

A computation of M would be represented by a truth assignment to these variables. The
fact that it was a “real” computation could be enforced by clauses defining the restrictions
imposed on the operation of M .

3 Getting started

Let’s consider a couple of examples before we try to carefully pin down all the details.

2

COSC 341 Notes: 17 Cook-Levin Theorem

How do we express the fact Position 3 of the main tape contains exactly one symbol at time 23?

We can break this down into two parts: there is a symbol there, and there is only one
symbol there. The first part is captured by a single clause:∨

s∈Σ

M-SYMBOL(s, 3, 23).

The latter part is really just “for any two distinct symbols at least one of them is false”.
That is, it is captured by the collection of all clauses of the form:

¬M-SYMBOL(s, 3, 23) ∨ ¬M-SYMBOL(s′, 3, 23)

for all pairs s, s′ ∈ Σ with s 6= s′.

Note the first clause has size |Σ| (which is a fixed constant) and the second group consists
of |Σ|(|Σ| − 1)/2 clauses each of size 2. So, each family of clauses of this type (i.e., for
other values of 3 and 23) is of constant total size.

What about If position 7 is not under the oracle read/write head at time 12 then the symbol at
that position is the same at time 13?

In logical terms, for each s ∈ Σ we assert:

¬O-HEAD(7, 12) ∧ O-SYMBOL(s, 7, 12) =⇒ O-SYMBOL(s, 7, 13).

We haven’t used the =⇒ operator (for “implies”) before but fortunately it turns out that:

x =⇒ y is equivalent to ¬x ∨ y.

So the condition above becomes the following clause (after also using one of DeMorgan’s
laws):

O-HEAD(7, 12) ∨ ¬O-SYMBOL(s, 7, 12) ∨ O-SYMBOL(s, 7, 13).

Just to check – let’s see how that clause might be true. The oracle-head might be at
position 7 at time 12 (in which case we’re happy – anything can happen to the oracle
symbol there at time 13). If not (so the first part of the clause is false) then either s is not
on the oracle-tape in position 7 at time 12 (first remaining part of the clause) or it is, in

3

COSC 341 Notes: 17 Cook-Levin Theorem

which case it must also be there at time 13. So, taking all those over all s ∈ Σ does indeed
capture the intended behaviour.

These two examples cover the main themes of the whole construction: making sure the
static situation is valid (the first type) and then checking consistency through time (the
second type). The rest is just (a lot of) bookkeeping.

4 Groups of clauses

Our reducer will convert M and the relevant part of the two tapes (i.e. only the first Anc

characters) into an instance of SATISFIABILITY. There are several groups of clauses in this
instance which play different roles:

• A group dealing with the representation being valid at each time step, i.e. things
like:

– There is a unique symbol at each point on the tape.

– The read/write head is in a specific position.

– The machine is in some state.

• A group representing the initial configuration.

• A group representing the final configuration.

• A group representing consistency between one frame (time t) and the next (time
t+ 1).

At all times we need to check that everything is bounded by a polynomial in the original
input size (n = |w|). We’ll do this as we go since the groups together just add up their
sizes. Note that, since it is fixed throughout, we can treat any parameters relating to M ,
specifically the number of states and the size of the alphabet as constants and suppress
them in O notation.

We will assume that M has states q0 through qm (denoted 0 through m in the parameters
of our M-SYMBOL and O-SYMBOL variables, which include special states denoted a and

4

COSC 341 Notes: 17 Cook-Levin Theorem

r which are the accepting and rejecting states respectively. These are modeled as “loop
states” i.e. the machine simply idles in these states once it reaches one. So we can assume
that a computation on input of length n is run for exactly Anc steps. Technically this
machine is not halting but of course that’s not really relevant. We will require that we
terminate after Anc transitions in one of these two states and that’s all that matters. We
now consider the groups one at a time:

4.1 Valid tape

“There is a symbol at each point on each tape at each time”

For 0 ≤ t ≤ Anc, and 0 ≤ j ≤ Anc:

∨
s∈Σ M-SYMBOL(s, j, t)∨
s∈Σ O-SYMBOL(s, j, t)

A total of O(n2c) clauses each of the same size as the alphabet. So polynomial.

“There are never two symbols at the same point of the tape at the same time.” In other
words: “For any two symbols, at least one of them is not on a particular point of the tape
at a particular time.”

For 0 ≤ t ≤ Anc, and 0 ≤ j ≤ Anc, and for distinct s, s′ ∈ Σ:

¬M-SYMBOL(s, j, t) ∨ ¬M-SYMBOL(s′, j, t)
¬O-SYMBOL(s, j, t) ∨ ¬O-SYMBOL(s′, j, t)

A total of O(n2c) more clauses each of size 2 so polynomial.

So that’s ensured that in a satisfying assignment we have exactly one variable set to true
that indicates a particular symbol on each state at each point in time. That is, a satisfying
assignment represents genuinely possible tapes.

5

COSC 341 Notes: 17 Cook-Levin Theorem

4.2 Valid machine

“At each time step the tape heads are somewhere.”

For 0 ≤ t ≤ Anc

∨
0≤j≤Anc M-HEAD(j, t)∨
0≤j≤Anc O-HEAD(j, t)

Two clauses each of size O(nc).

“And they’re not in two places at once”

For each 0 ≤ j < j′ ≤ Anc one clause:

¬M-HEAD(j, t) ∨ ¬M-HEAD(j′, t)
¬O-HEAD(j, t) ∨ ¬O-HEAD(j′, t)

That’s O(n3c) clauses (nc from time, and n2c from the (j, j′) pairs) each of size 2.

“At each time step the machine is in some state”

For 0 ≤ t ≤ Anc

∨
0≤i≤m

STATE(i, t)

O(nc) clauses of constant size.

“And it’s not in two states at once”

For 0 ≤ t ≤ Anc, and each 0 ≤ i < i′ ≤ m:

¬STATE(i, t) ∨ ¬STATE(i′, t)

Again O(nc) clauses of size 2.

6

COSC 341 Notes: 17 Cook-Levin Theorem

5 Initial/Final

“The initial state is 0, the read/write head is at position 0 and the first Anc positions of
the tape match w”

STATE(0, 0)
M-HEAD(0, 0)
O-HEAD(0, 0)

M-SYMBOL(wj , j, 0) for 0 ≤ j ≤ Anc.

That’s O(nc) clauses of size 1.

“The final state is a”

STATE(a,Anc).

One clause of size 1.

At this point we have a static representation of a series of snapshots of a machine which
in the correct initial configuration, and the correct final configuration and such that the
intermediate configurations are all valid ones. What we don’t have is any link between
configurations at successive time steps.

6 Transitions

“Only the symbol under the read/write head can change”

or

“If the head is somewhere, then no symbol anywhere else can change”.

For 0 ≤ t < Anc, 0 ≤ j, j′ ≤ Anc, with j 6= j′ and all s, s′ ∈ Σ with s 6= s′:

M-HEAD(j, t)⇒ ¬ (M-SYMBOL(s, j′, t) ∧M-SYMBOL(s′, j′, t+ 1))
O-HEAD(j, t)⇒ ¬ (O-SYMBOL(s, j′, t) ∧ O-SYMBOL(s′, j′, t+ 1))

7

COSC 341 Notes: 17 Cook-Levin Theorem

But a⇒ ¬(b∧ c) is logically equivalent to ¬a∨¬b∨¬c so this is a family of O(n3c) clauses
of size 3.

“If we are in state q at position jm on the main tape and jo on the oracle tape reading
symbols sm on the main tape and so on the oracle tape then we must move to the state
which is determined by the transition from q, sm and so”

Suppose that this transition does the following:

• Writes s′m on the main tape and s′o on the oracle tape.

• Moves the main head by εm ∈ {−1, 0, 1} and the oracle head by εo ∈ {−1, 0, 1}

• Changes to state q′

Then we want to ensure that:

∧

STATE(q, t)
M-HEAD(jm, t)
O-HEAD(jo, t)
M-SYMBOL(sm, jm, t)
O-SYMBOL(so, jo, t)

 =⇒
∧

M-SYMBOL(s′m, jm, t+ 1)
O-SYMBOL(s′o, jo, t+ 1)
M-HEAD(jm + εm, t+ 1)
O-HEAD(jo + εo, t+ 1)
STATE(q′, t+ 1)

But x =⇒ y1 ∧ y2 ∧ . . . yk is equivalent to x =⇒ y1 and x =⇒ y2 and . . . and x =⇒ yk,
and as we’ve already seen, a conjunction on the left-hand side of an implication becomes
a disjunction in the equivalent form. So each of thse implications can be replaced by five
clauses of size six. We need to do this for every t, q, jm, jo, sm and so but that’s still only
another O(n3c) clauses of constant size.

And that’s it!

7 Overview

We have described a mechanical procedure for converting in polynomial time, a non-
deterministic Turing machine M with polynomial time complexity and an input word w
into a formula Φ(M,w) in CNF, i.e. an instance of SAT. This translation is such that if

8

COSC 341 Notes: 17 Cook-Levin Theorem

Φ(M,w) is satisfiable, then any satisfying assignment represents a series of snapshots of
a valid accepting computation of M on input w.

Moreover, if such a computation exists, we can use it to set the variables of Φ(M,w) to
produce a satisfying assignment.

So:

M accepts w if and only if Φ(M,w) is satisfiable.

That is, we have a polynomial time reduction from “The language accepted by M” to
SAT. Since M was an arbitrary non-deterministic Turing machine with polynomial time-
complexity this means that SAT is NP-hard, and therefore NP-complete (since we al-
ready know that it is in NP).

Phew.

9

COSC 341 Notes: 17 Cook-Levin Theorem

8 Tutorial problems

10

	Introduction
	Introducing the variables
	Getting started
	Groups of clauses
	Valid tape
	Valid machine

	Initial/Final
	Transitions
	Overview
	Tutorial problems

