
COSC 341 Notes: 18 Reductions galore

1 Introduction

We now want to use our new-found knowledge of:

Theorem 1.1 (Cook, 1971). SAT is NP-complete

to prove that a lot of other problems are NP-complete.

2 Small clauses are enough

First of all we’re going to show that we can reduce clauses in SAT to contain at most three
literals, while still retaining NP-completeness. To that end, let’s define:

k-SATISFIABILITY

Instance A SAT instance with exactly k literals per clause.
Problem Is it satisfiable?

Proposition 2.1. For k > 3, k-SAT is NP-complete. For k < 3 it is in P.

Proof. Let’s start with the easy bits. Certainly 1-SAT is in P, since all we need to do is
check whether both a literal and its negation occur as clauses (if so, we’re unsatisfiable, it
not, we’re satisfiable).

For 2-SAT, things are a little more interesting. Suppose that we have an instance of 2-SAT

using n variables x1, x2, . . . , xn. I’m going to show how to reduce it in polynomial time
to an instance in (n− 1) variables which is satisfiable if and only if the original one was.
Eventually that’s all we need since once we get to one variable the situation will be clear!

Consider the variable xn and all the clauses z ∨ xn in our instance (where z is another
literal from among x1 through xn−1 and their negations). Let the set of these literals be
P (“positive for xn”). If, in P we have an occurrence of both a variable and its negation,
then in any satisfying assignment, xn would have to be true (otherwise, one of those two
clauses would be false). In that case, we just set xn = t, include all the individual literals

1

COSC 341 Notes: 18 Reductions galore

that occur in clauses y ∨¬xn as new one-literal clauses1and we have our (n− 1)-variable
instance. We can do a similar thing with the literals N occurring in the clauses z ∨ ¬xn.

If neither of these hold, there’s no reason to suppose in advance that xn would have to be
either t or f. However, if xn = t in a satisfying assignment then we must have∧

w∈N
w = t,

while, if xn = f in a satisfying assignment then we must have∧
z∈P

z = t.

So, we must have: (∧
w∈N

w

) ∨ (∧
z∈P

z

)
= t

for there to be the possibility of a satisfying assignment (and the rest of the clauses must
also be satisfied). This is not in CNF but using the distributive law of ∨ over ∧ it’s equiv-
alent to a conjunction of |N ||P | clauses each of size 2 in the remaining variables.

Thus, in any case we’re down to an instance of 2-SAT in fewer variables.

Now, what about the case where k > 3? Obviously, it’s enough to show that 3-SAT is
NP-complete since 4-SAT is more general than 3-SAT etc. etc. (we can get to 4-SAT from
3-SAT just by duplicating an element in each clause – even if you don’t want to allow
duplicated literals in clauses there are easy work-arounds – see footnote 2 below).

Small clauses are no problem since we can just add duplicated literals if need be2.

1If you’re worried that our clauses are supposed to have exactly two literals, note that in this case we can
actually “resolve” these clauses, i.e., the truth value of those literals y is forced so we can actually eliminate
(recursively if need be) more than one variable.

2Again, if this offends your sense of what a “3-literal clause” should be, we can be more clever, e.g.,
replace the clause x by four clauses x∨x1∨x2, x∨¬x1∨x2, x∨x1∨¬x2, x∨¬x1∨¬x2 where x1 and x2 are
new variables. This family of clauses can only be satisfied by setting x = t so serves the same purpose as the
original. Similarly to boost a 2-literal clause to 3 literals takes only one new variable and two new clauses

2

COSC 341 Notes: 18 Reductions galore

The key idea here is to show that for every “big” clause

x1 ∨ x2 ∨ · · · ∨ xn

where n > 4 there is a (polynomially-sized) family of clauses of size 3 that is satisfiable
only for truth assignments of the xi that satisfy the original clause. Let’s introduce some
new variables (not occurring in this, or in any other clauses) z3 through zn−1 and consider
the family of clauses:

x1 ∨ x2 ∨ z3
¬z3 ∨ x3 ∨ z4
¬z4 ∨ x4 ∨ z5

· · ·
¬zn−2 ∨ xn−2 ∨ zn−1
¬zn−1 ∨ xn−1 ∨ xn.

Suppose we have a satisfying assignment for this. Can all the xi be false? If so, we need
z3 through zn−1 all t in order to satisfy all but the last clause. But then the last clause is
not satisfied. Conversely, if any xi = t for i from 3 to n − 2 we can set zt to be t for t 6 i
and f for i < t which satisfies all the clauses. If x1 or x2 is t we can make all the zs be f
and if xn−1 or xn is t we can make all the zs be t.

So the satisfying assignments for this new set of clauses are, restricted to the variables
occurring in the literals xi, exactly the same as the satisfying assignments for the original
single clause.

Therefore, replacing each clause in an instance of SAT by a family of clauses of size 3 in
this way gives a polynomial-time reduction from SAT to 3-SAT and therefore establishes
that 3-SAT is NP-complete.

Using 3-SAT rather than SAT in reductions is frequently convenient because of the fixed
clause size.

3

COSC 341 Notes: 18 Reductions galore

3 Reducing 3-SAT to INDEPENDENT-SET

Recall:
INDEPENDENT-SET

Instance: A graph G and a positive integer k
Problem: Is there an independent set in G having (at least) k elements?

We will show a polynomial-time reduction of 3-SAT to INDEPENDENT-SET, thereby veri-
fying that the latter is NP-complete. What does finding such a reduction entail?

INPUT: A set of clauses each containing exactly three literals
OUTPUT: A graph G and a parameter k such that the clauses are satisfiable if and only if
G has a k-element independent set.

Of course crucially, the reduction has to be done in polynomial-time. In this case the idea
is a very simple (but elegant) one. Let k be the number of clauses in the 3-SAT instance.
For each clause x ∨ y ∨ z, include a triangle in G, giving a total of 3k vertices (label the
vertices of each triangle with the corresponding literals). Then connect with an edge each
pair of vertices representing contradictory literals (i.e., a variable and its negation).

Suppose first that the clauses have a satisfying assignment. Take one, and choose one
vertex from each triangle that is t for the assignment. Since we can never select contra-
dictory literals in this way and since we’re only selecting one vertex per triangle, we get
a k-element independent set.

Conversely, suppose that G has a k-element independent set. This must include exactly
one vertex per triangle (since it can’t have two vertices in any triangle). Form the truth
assignment that arises from setting the literals corresponding to the independent set to
be t. This is possible, since we can never be required to set both a literal and its negation
to t as all such pairs are connected by edges. There may be some unassigned variables –
set them arbitrarily. The resulting truth assignment has at least one true literal per clause,
and so the 3-SAT instance was satisfiable.

The graph below exhibits the construction for the clauses:

x ∨ y ∨ z
¬x ∨ ¬y ∨ z
¬x ∨ y ∨ ¬z.

4

COSC 341 Notes: 18 Reductions galore

z x

y

¬x z

¬y

¬xy

¬z

The satisfying assignment with all of x, y and z set to t corresponds to the independent
sets using any one of the three in the upper left triangle, the z in the upper right triangle,
and the y in the lower triangle. Of course other satisfying assignments exist, but each
corresponds to one or more independent sets of size three. For instance, we could take
x = f, y = f, z = t which would correspond to the z in the upper left, ¬x or ¬y in the
upper right, and ¬x in the lower triangle.

4 3-SAT to 3-COLOURING

Again recall:
3-COLOURING

Instance: A graph G
Problem: Is there a 3-colouring of G?

This time to give the reduction we’ll follow a slightly different strategy:

• First we’ll define a part of the graph, call it the core, corresponding to the individ-
ual variables and their negations that occur in (any of) the clauses in such a way
that each 3-colouring of that part corresponds to a unique truth assignment to the
variables, then

• for each clause, we’ll add a gadget that connects the corresponding literals (and
possibly some other vertices) in such a way that the gadget can be three-coloured if
and only if one of its literals is t.

5

COSC 341 Notes: 18 Reductions galore

If there are a total of k distinct variables that occur in literals of the clauses (say x1 through
xk), then the core will consist of k + 1 triangles, sharing a common base vertex. One
triangle will have its other two vertices labelled t and f.

We illustrate the core below for the three variable case again together with the three
colouring corresponding to x = t, y = t and z = f:

B

tf

x

¬x

y¬y

z

¬z

What do the three-colourings of the core look like? The base vertex gets some colour
(call it blue). The t-vertex also gets a colour, call it green, and the f-vertex gets the third
colour, red. Then we are free to choose for each variable whether to colour it green and
its negation red or vice versa. That is, each colouring of the core corresponds precisely
to a truth assignment of the variables where all the variables sharing a colour with the
t-vertex are assigned the value t while those sharing their colour with the f-vertex are
assigned the value f.

Now consider any clause a ∨ b ∨ c where each of a, b and c is some literal. Define the
following gadget that uses the vertices of the core corresponding to a, b, c and t, together
with six new vertices. Note that for the purposes of symmetry, three copies of the vertex
t have been drawn – but they all stand for the same vertex of the core.

6

COSC 341 Notes: 18 Reductions galore

t

a

b

t

c

t

If a, b and c are all f, i.e., red and we try to 3-colour the gadget then each of the vertices
adjacent to the corner of the triangles must be coloured blue. But then each of the vertices
of the triangle would have to be red or green and two would be the same colour, so we
cannot properly colour the gadget in that case.

However, if even one of a, b or c is t, then the adjacent vertex can be blue or red, and the
corresponding vertex of the triangle could be any colour. Thus, in this case we can three
colour the gadget.

If the 3-SAT instance is satisfiable then the corresponding three-colouring of the core can
be extended to a three-colouring of the entire graph consisting of the core and all the
gadgets. Conversely, if we have a three-colouring of the entire graph then, because the
gadgets are properly three-coloured, each clause is satisfied in the truth assignment that
corresponds to the colouring of the core.

So, we have achieved a reduction of 3-SAT to 3-COLOURING.

7

COSC 341 Notes: 18 Reductions galore

5 3-SAT to HAMILTON-CYCLE

It turns out to be more convenient to do this one via an intermediate problem:

DIRECTED HAMILTON-CYCLE

Instance: A directed graph G
Problem: Is there a cycle in G that visits every vertex?

So, what’s a directed graph? That’s easy - edges are now ordered pairs of vertices and an
edge (v, w) represents an edge from v to w. We still disallow multiple copies of the same
edge (i.e., the edges are a set) but having both edges (v, w) and (w, v) are allowed. A cycle
in a directed graph must use the edges in the “correct” direction. That is, if (v, w) is an
edge but (w, v) is not then a cycle can have the form · · · vw · · · but not · · ·wv · · · .
We have to define two reductions: 3-SAT to DIRECTED HAMILTON-CYCLE and DIRECTED

HAMILTON-CYCLE to HAMILTON-CYCLE. Let’s deal with the second one first since it’s
an easy idea.

Given a directed graph Gd (i.e., an instance of DIRECTED HAMILTON-CYCLE) we’ll con-
struct an undirected graph, Gu with three times as many vertices. Each vertex v of Gd

gets replaced by three vertices vi (“v-in”), v, and vo (“v-out”) connected by edges {vi, v}
and {v, vo}. Every directed edge (v, w) defines an edge between vo and wi in Gu. It’s clear
we can construct Gu in polynomial time from Gd.

In the pictures below we show the undirected graph obtained from a triangle directed as
a cycle, and one where two of the edges clash.

x

y

z

x

xi

xo

y

yi

yo

z

zi

zo

8

COSC 341 Notes: 18 Reductions galore

x

y

z

x

xi

xo

y

yi

yo

z

zi

zo

Suppose that Gd had a directed Hamilton cycle. Take a Hamilton cycle v1v2 . . . vn of Gd

(so vn = v1 and each of (vi, vi+1) is an edge of Gd for 1 6 i < n). Then:

v1i v
1 v1o v

2
i v

2 v2o v
3
i · · · vn−1i vn−1 vn−1o v1i

is a Hamilton cycle of Gu.

Conversely, if Gu has a Hamilton cycle choose some arbitrary vertex v as the start point.
If the next vertex of the cycle is vo then proceed as below. Otherwise it is some vertex
vi. In that case read the cycle in the opposite order (its only two neighbours are vi and
vo so one of these holds, and in an undirected graph the reverse of a Hamilton cycle is a
Hamilton cycle).

Now the full cycle has to take the form “go from some ‘out’ vertex to an ‘in’ vertex cor-
responding to an edge in Gd, from there to the corresponding ‘original’ vertex (or you’ll
miss it), then to the ‘out’ vertex for it . . . ” In other words if we just throw away all the
‘in’ and ‘out’ vertices in the undirected cycle we’ll see a Hamilton cycle of the directed
graph.

So now we need a reduction from 3-SAT to DIRECTED HAMILTON-CYCLE. The first part
of the construction is to build a graph that has one possible directed Hamilton cycle for
each assignment of truth values to some sequence of variables. For this purpose we
introduce an individual “variable gadget” that looks like this:

9

COSC 341 Notes: 18 Reductions galore

The size of the midline should be three times the number of clauses we plan to include
(so this gadget would be suitable for three clauses).

Notice the “two-way” arrows across the middle - they are really two one-way arrows
but it’s easier to draw them like this. If a Hamilton cycle in some graph containing this
variable gadget enters at the top then it must go left (which we’ll call “true”) or right
(“false”). That’s why we coloured the left vertex green and the right one red. Then, in
order not to miss the vertices across the middle it has to run across to the opposite side,
before proceeding to the bottom.

Now we can glue variable gadgets together with one more vertex (coloured blue)

x

y

z

There are eight directed Hamilton cycles in this graph – one corresponding to each pos-
sible truth assignment for the three variables.

10

COSC 341 Notes: 18 Reductions galore

Now we need to add a little more for the clauses. Each clause will add just one new
vertex. This will be joined in to the midline of the variable gadget in such a way that if
the truth setting satisfies the clause then we can detour briefly to visit the clause vertex
as we cross the midline of an appropriate variable. For instance suppose that our first
clause is C = x ∨ ¬y ∨ z. Choose the first two vertices (on the left) inside the midline of
each gadget. When the variable occurs positively, connect the first of these to the vertex
for C, and C to the second one. When it occurs negatively, do the reverse. For this clause
and our three variables we’d get:

x

y

z

C

Notice that each pair of vertices in a midline that we’re planning to connect into a clause
vertex are guarded on either side by a vertex that won’t be connected that way. The local
situation is (symmetric to):

Here the solid vertices are the ones connected to the clause vertex and the hollow ones
are the “guards”. Suppose that in a Hamilton cycle we use the upwards pointing edge to
visit the clause vertex. How could that happen? If we arrived at the solid vertex that is
its source from the right hand side then we can’t use the edge connecting to the leftmost
guard vertex. But that vertex has only one other incoming and outgoing edge and they’re
from the same vertex (the next to the left along the midline) so it couldn’t be part of the

11

COSC 341 Notes: 18 Reductions galore

Hamilton cycle. So we must arrive from the left. Now we visit the clause vertex. Suppose
that we don’t immediately return to this midline. In that case the second solid vertex is
cut off from the cycle – we aren’t using the edge to the clause vertex, nor the edges to
and from the preceding vertex on the midline – so again it has only one incoming and
outgoing edge remaining and they have the same other endpoint meaning we can’t create
a cycle.

In other words, when we visit a clause vertex as part of a Hamilton cycle we must im-
mediately return to the same midline or we’d have a contradiction. Ignoring our visits to
the clause vertices gives us a Hamilton cycle of the original graph that glued the variable
gadgets together, and therefore corresponds to a truth assignment of the variables. And,
the mere ability to have visited a clause vertex from the midline of some variable gadget
means this truth assignment must have been satisfying for each clause, and hence for the
whole SAT-instance.

So if the big graph has a directed Hamilton cycle then the SAT-instance was satisfiable.
Conversely, if we have a satisfying assignment then just take the corresponding Hamilton
cycle in the variable gadget graph, detouring to visit each clause at some point when
you’re crossing the midline of a variable gadget in an appropriate direction.

12

COSC 341 Notes: 18 Reductions galore

6 Tutorial problems

13

	Introduction
	Small clauses are enough
	Reducing 3-Sat to Independent-set
	3-Sat to 3-colouring
	3-Sat to Hamilton-Cycle
	Tutorial problems

