
COSC 341 Notes: 20 Matching

1 Introduction

Back to graphs (and introducing hypergraphs). We’ll consider problems about matchings.
As well as being of immense practical significance (in scheduling and task assignment
primarily) it was the problem of finding maximum matchings in general graphs that
Edmonds was considering when he introduced the Blossom algorithm and speculated
about the significance of polynomial-time vs. exponential algorithms.

2 Bipartite graphs and matchings

A bipartite graph is a graph, G, whose vertices can be partitioned into two sets A and B
such that every edge has one endpoint in A and the other in B. If the graph is connected
(meaning that there’s a path between any two vertices) then this partition is effectively
unique (aside from changing names of the parts). Being bipartite is equivalent to being
2-colourable.

A standard example that motivates the following ideas a little is to think of A as being
staff members in a department, and B as a set of papers that need to be taught. A staff
member and a paper are adjacent if that staff member can teach that paper.

A matching, M , in a bipartite graph (or indeed any graph) is just a set of edges, no two
of which share a common endpoint. In the standard example, a matching represents an
assignment of (some) staff to (some) papers in such a way that no staff member is respon-
sible for two or more papers, and no paper is taught by more than one staff member.

A maximum matching in G is a matching whose size is as large as it possibly can be. That
is, an assignment of staff to papers that results in the largest possible number of papers
being delivered. A matching is perfect if every vertex of G is the endpoint of some edge
in the matching (every staff member teaches one paper, and every paper is taught by
one staff member). Obviously, a necessary condition for a perfect matching to exist in a
bipartite graph with parts A and B is that |A| = |B|, but this is far from sufficient.

Now we’re in a position to ask for various decision and search problems about matchings
in bipartite graphs (which we suppose are delivered with a fixed partition into two sets
A and B as above)

1

https://en.wikipedia.org/wiki/Blossom_algorithm


COSC 341 Notes: 20 Matching

• Does G have a perfect matching?

• Find a perfect matching for G.

• Does G have a matching containing at least k edges? (k a parameter)

• Find a matching in G having at least k edges.

• What is the size of a maximum matching for G?

• Find a maximum matching for G.

All these problems turn out to be in P, and using ideas we’ve seen already it’s easy
enough to solve them all once you’ve solved one of them. So, we’ll concentrate on the
issue of finding a maximum matching.

Through the rest of these notes, we’re going to use the following graph as an example.

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

One matching, M1, in this graph, obtained by choosing the vertices in the bottom part
from left to right and then choosing the leftmost adjacent vertex in the upper part that’s
available to match with is:

2



COSC 341 Notes: 20 Matching

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

A second, larger, matching, M2 is:

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Consider the edges that occur in one or the other of these matchings but not both (their
symmetric difference – denoted M1 ⊕M2). The edges of the first matching are coloured
black, and of the second red.

3



COSC 341 Notes: 20 Matching

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Note that these edges form a single path, starting and finishing with a red edge, i.e., an
edge that does not belong to the smaller matching. Such a path is called an augmenting
path for the original matching.

Definition 2.1. Let G be a graph, and M a matching in G. An augmenting path for M is
a path v0v1v2 · · · vn of odd length such that v0 and vn are not the endpoints of any edge
in M and vivi+1 belongs to M if and only if i is odd. That is, it starts and finishes on
unmatched vertices and otherwise alternates between edges in and out of M .

Note that if a matching has an augmenting path it can’t be maximum because we could
remove all the edges of the path from M and replace them with the other edges of the
path – increasing the size of M by one. Of greater interest to us is that the converse is also
true:

Proposition 2.2. If a matching, M , in a bipartite graph, G, is not maximum then it has an
augmenting path.

Proof. Let M ′ be a maximum matching for G. The symmetric difference M ⊕M ′ consists
of a union of paths and even cycles. The even cycles contain the same number of edges
from M as from M ′. The paths contain either the same number of edges of each type, or
one more from one of the matchings. Since there were more edges in M ′ to begin with
than in M , there are more edges from M ′ in the symmetric difference than from M and
so at least one of those paths must be augmenting for M .

4



COSC 341 Notes: 20 Matching

In fact we can conclude a bit more from the proof – since each augmenting path only
accounts for one edge’s worth of difference between the sizes of M and M ′, if there are
r more edges in M ′ than in M then M ⊕M ′ must contain at least r vertex-disjoint aug-
menting paths.

This proposition also gives us the central idea for an algorithm to construct a maximum
matching:
Require: A bipartite graph G
Ensure: A maximum matching M of G
M ← {}
while M has an augmenting path P do

M ←M ⊕ P
end while
return M

The catch of course is, how do we determine if M has an augmenting path? How do we
find one? Or more than one – we could use any set of augmenting paths so long as they
have no vertices in common.

3 The Hopcroft-Karp algorithm

The core of this algorithm is to find a maximal set of shortest vertex-disjoint augment-
ing paths for a given matching M in a bipartite graph G. This is accomplished by doing
a breadth first search forward from the free, i.e., unmatched vertices in A alternating be-
tween edges that belong to/don’t belong to M until we reach at least one unmatched ver-
tex in B. Let’s start with illustrating this for our example graph using the initial matching
M1 = {01, 10, 22, 36, 45, 67} (shown above). The free (blue) vertices are 5 and 7, which are
adjacent to (green) 256 and 056 respectively.

5



COSC 341 Notes: 20 Matching

5 7

0 2 5 6

Now (green) 0256 are matched to (blue) 1243 respectively.

1 2 34

5 7

0 2 5 6

In the next phase we return to using non-matching edges from (blue) 1243 to unvisited
green vertices (1347)

6



COSC 341 Notes: 20 Matching

1 2 34

5 7

0

1

2

4

5 6

At this point we observe that 4 is a free green vertex. So, we have found a shortest
augmenting path. We can construct an augmenting path by depth-first search backwards
from 4 - say 4-1-0-7. So we take the 10 edge out of the matching and add 70 and 14.

That gives the following matching: 01, 14, 22, 36, 45, 67, 70.

Now let’s try again. Start from the only remaining free blue vertex (5) and do a breadth-
first search as previously, alternating between edges in or not in the matching. The end
product is:

7



COSC 341 Notes: 20 Matching

0 1

2 34

5

7

01

2

3

4

5 6

So we find a longer augmenting path between the only remaining pair of free vertices,
and hence a perfect matching:

03, 14, 21, 36, 45, 52, 67, 70.

If we’d reached multiple free vertices on the final layer then, also by depth-first search,
we’d try to find augmenting paths back to the original layer – deleting vertices as we
use them. This would ensure that we obtain a maximal set of vertex-disjoint shortest
augmenting paths.

To summarise, the complete algorithm is as follows:

8



COSC 341 Notes: 20 Matching

Algorithm 1 Hopcroft-Karp algorithm for maximum matching

Require: A bipartite graph G with parts A and B
Ensure: A maximum matching M of G
M ← {}
repeat

- From the free vertices in A do a breadth-first search alternating edges out of and in
the matching until you reach a free vertex in B or none are found.
if one or more free vertices in B are reached then

- Construct by depth-first search a maximal set of augmenting paths for M
- Update M by switching the augmenting paths

end if
until no augmenting path is found
return M

Now to complete the analysis of the algorithm we need to do just a little bit more graph
theory. The following is a key result from Hopcroft and Karp’s original paper. Note that
when we talk about an intersection between paths we’re thinking of the paths as sets of
edges – so the intersection is any edges that they have in common.

Theorem 3.1. Let M be a matching, P a shortest augmenting path for M , and Q an augmenting
path for M ⊕ P . Then |Q| ⩾ |P |+ |P ∩Q|.

Proof. The matching N = M ⊕ P ⊕ Q has 2 more edges than M , so contains at least 2
vertex-disjoint augmenting paths, P1 and P2, relative to M . Since these are augmenting
paths for M and P is a shortest such path the length of each is at least |P |. So,

|P ⊕Q| = |M ⊕N | ⩾ 2|P |.

But in general:
|P ⊕Q| = |P |+ |Q| − |P ∩Q|

and so
|P |+ |Q| − |P ∩Q| ⩾ 2|P |

9



COSC 341 Notes: 20 Matching

which is the same as
|Q| ⩾ |P |+ |P ∩Q|

Starting from a matching M for G we find a maximal set of vertex-disjoint shortest aug-
menting paths P1, P2, . . . , Pk. We then have a new matching N = M ⊕P1⊕· · ·⊕Pk. Now
suppose we find an augmenting path Q for N , e.g., in the next round of the algorithm.
We first note that Q can’t be vertex-disjoint from all of the P ’s. If it were, and shorter
than them, then it would have been a shorter augmenting path for M , while if it were
the same length or longer it would contradict the maximality of the chosen P ’s. Without
loss of generality, order the P ’s so that Pk and Q are not vertex-disjoint. But now notice
that Pk is an augmenting path for M ⊕ P1 ⊕ · · · ⊕ Pk−1 and Q is an augmenting path for
M ⊕ P1 ⊕ · · · ⊕ Pk. But, since Q and Pk share a vertex, v, the edge of Pk that belongs to
the matching M ⊕P1⊕ · · · ⊕Pk and contains v must also belong to Q. So by the previous
theorem:

|Q| ⩾ |Pk|+ 1.

That is, the shortest augmenting path in the next round of the algorithm must always be
strictly longer than the shortest path in the preceding round.

Now let V be the set of vertices of G and suppose that we’ve run the algorithm for
√
|V |-

many rounds producing a matching M . This guarantees that the shortest remaining aug-
menting paths must have length greater than

√
|V |. Suppose that O is an optimal (i.e.,

maximum) matching, having t more edges than M . By the fact following Proposition ??,
O ⊕ M must contain t disjoint augmenting paths relative to M . But, all of them have
length at least

√
|V | and we only have |V |many vertices to work with, so there can be at

most
√
|V | of them, i.e., t ⩽

√
|V |. Since each round finds at least one new augmenting

path if possible, the algorithm can run at most
√
|V | additional rounds (in fact a little

less).

Each round consists of one breadth-first and one depth-first search inside G and so (with
just a little care with the data structure) can be carried out in O(|E|) steps, where E is the
set of edges of G. Therefore, we can find a maximum matching in time O(|E|

√
|V |).

Therefore, we can find a maximum matching in a bipartite graph in polynomial time, and
all the other questions we asked are easily resolved when we can do that.

10



COSC 341 Notes: 20 Matching

The best of the YouTube videos I found is this one by Joromy Bou Khalil and Wesley
Williams, University of Bristol.

[1] John E. Hopcroft and Richard M. Karp, An n5/2 Algorithm for Maximum Matchings in Bipartite Graphs,
SIAM Journal on Computing 2 (1973), no. 4, 225-7.

4 Three-dimensional matching

What if time is also a feature when our lecturers teach? For example, what if I’d be willing
to teach COSC201 at 1100 but not at 1400? Whereas Anthony might be willing to teach it
at 1400 but not at 0900. And so on . . .

This is just the matching problem for so called 3-regular hypergraphs. In a 3-regular
hypergraph an edge is not a pair of vertices but a triple. That suggests the following
problem as a natural generalisation of finding a perfect matching.

PERFECT 3-D MATCHING

Instance A 3-regular hypergraph H .
Problem Does H have a disjoint set of edges covering every vertex exactly once.

Strictly speaking our hypergraph should consist of three sets A, B and C and each edge
should contain one vertex from each set. I’ll leave you to check that the instance we
construct for a reduction of 3-SAT has this property.

Let an instance of 3-SAT be given having k variables and c clauses. For each variable, x,
construct a 2c-pointed star that looks like this if c = 4:

11

https://www.youtube.com/watch?v=lM5eIpF0xjA


COSC 341 Notes: 20 Matching

x 0

0
1

1

2

2
3

3

The triangles denote edges and an important feature is that the only triangles containing
vertices on the inner cycle are the ones shown. Therefore, if a perfect matching is to exist
then just on this set it must use either all the red triangles or all the green ones. Suppose
it uses the red triangles – this will be associated to setting x = t because we have “green
tips” that still need to covered. The labels on the triangles represent the clause that each
one is associated with.

Now for each clause Ci we add two fresh vertices and three triangles. Each of the three
triangles contains the two fresh vertices together with the appropriately coloured and
labelled tip of the star associated to the corresponding literal. These are the only trian-
gles that contain those two fresh vertices so, if we are to have a perfect matching in the
hypergraph then at least one of the literals associated to the clause must be true.

Initially, there are k uncovered tips corresponding to each clause (one per variable) and
we only cover one of them with the triangle corresponding to that clause. So, there re-
main c(k − 1) uncovered tips altogether. We clean these up with c(k − 1) more “fresh
pairs” of vertices and triangles consisting of each such fresh pair and every tip of every
star.

Suppose we have a satisfying assignment. Then, we cover each star appropriately, and
for each clause select a free tip to cover the vertices associated with the clause. Finally we
clean up arbitrarily covering the remaining 2c tips with the clean up triangles. That’s a
perfect 3-D matching.

Conversely, if we have a perfect 3-D matching, the covering triangles of the stars tell us a

12



COSC 341 Notes: 20 Matching

truth assignment, and the fact that the clause triangles are covered shows that the truth
assignment satisfies each clause.

5 Problems

1. Check that all the problems in the list about bipartite matching are polynomially
equivalent to one another (basically this just amounts to showing that if you had
an algorithm for a more restricted version it could be used to solve a more general
version).

2. Check that we can divide the vertices of the hypergraph constructed in reducing 3-
SAT to PERFECT 3-D MATCHING into three sets A, B and C such that each triangle
contains one vertex from each set.

13


