COSC341 TUTORIAL 2

The theme of this tutorial is to explore the definition of strings a bit, and to under-
stand the relationships between regular grammars and DFAs.

Recall that a string of length n over an alphabet X is actually a function from the
set{0,1,2,...,n— 1} (which I'll denote [n]) to ¥ and that the set of all strings (of
any length, including the empty string) over 3 is denoted >*. The notation for the
length of a given string w is |w|.

1. If 3 has k elements how many different strings of length n are there over 3.7

There are n times we get to choose freely from among k things and these
choices are independent, so the number of ways to dois k X k X --- X k
where there are n factors of k, i.e., k™.

2. Ifw e X*and m,i + j < |w| how are:
* the prefix of w of length m,
* the suffix of w of length m, and
* the substring of w starting at position i of length j

defined?

* The prefix, p of w of length m is the map p : {0,1,...,m —1} = %
where p(t) = w(t) forall 0 < t < m.

* The suffix, s of w of length m is the map s : {0,1,...,m — 1} —» X
where s(t) = w(t +n —m) forall 0 <t < m.

* The substring, m of w of length j starting at position ¢ is the map
m:{0,1,...,5— 1} = X where m(t) = w(i + t) forall 0 < ¢ < j.
3. Ifw,v € X* how are:

* the result of prepending a € X to w,
* the result of appending a € X to w, and

* the result of concatenating w and v

defined?

* The result of prepending a € ¥ to w is the map u where u(0) = a, and
u(t) = w(t —1) for 1 <t < |w| (note not < |w| since we’re adding
one to the length).



* The result of appending a € X to w is the map u where u(t) = w(t)
for 0 <t < |w| and u(|w|) = a.

* The result of concatenting w and v is the map w - v defined for 0 < t <
|w| + |v| where:

[ w(?) for 0 <t < |wl,
(w-v)(t) = { o(t — |w]) for [w] <t < [w] + [v].
4. Determine a regular grammar for the language of all strings containing an
even number of as (over ¥ = {a, b}).

S — €|a0|bS
O — aS|b0.

Basically, S stands for “even number of a’s so far” and O for “odd number
of a’s so far”.

5. Let A and B be DFAs over the same alphabet, .. Can you describe DFAs
that accept:

» The complement of the language L(A), i.e., the set of all strings not
belonging to L(A),

* The intersection of L(A) and L(B), i.e., the set of all strings belonging
to both of L(A) and L(B), and

* The union of L(A) and L(B), i.e., the set of all strings belonging to at
least one of L(A) and L(B).

For the first part, just interchange all the accepting and non-accepting states.
For the second and third part, we can create a product automaton. Consider
a new DFA whose states are members of the cross product A x B (a set
of all ordered pairs (A, B) where A is from A and B is from B). The
transition from a state (S,7") on letter a is to the state (S’,7”) where in
A, the transition on « is from S is to S’ and in B the transition on a is
from 7' to T". The start state is the pair consisting of the start states of the
respective machines. Finally for the second part the accepting states are all
those pairs where both states are accepting, while for the third it’s those
where either state is accepting. See https://www.geeksforgeeks.
org/cross—-product-operation-in-dfa/ for an example of the
intersection case.


https://www.geeksforgeeks.org/cross-product-operation-in-dfa/
https://www.geeksforgeeks.org/cross-product-operation-in-dfa/

6. Repeat the previous question for the languages L(G) and L(H) associated
to two right-regular grammars over 3.

Union is “easy” since we can assume that, except for the start symbol the
two grammars have no non-terminal symbols in common and then just write
down all the rules for both grammars. A little care is needed here if we have
productions that lead back to the start symbol in either grammar - in that case
we need two “fresh” copies of the start symbol appropriate to each grammar
and use those instead.

Because of the inherent non-determinism of grammars (where we might have
multiple rules associated with a particular letter) it’s not at all clear how one
could realise the intersection of two languages or the complement of one.



