
COSC341 TUTORIAL 5, SOLUTIONS
Checking to make sure we understand how to convert between all the different ver-
sions of regular languages and a bit more on closure properties. Unless otherwise
specified use the alphabet Σ = {a, b}.

1. A closure property for the regular languages is a construction that applies
to a regular language (or languages) and is guaranteed to produce another
regular language. For example “the union of two regular languages is reg-
ular”. What closure properties have we mentioned so far? What others can
you think of?

The regular languages are closed under all of:

• union,

• intersection,

• complement,

• Kleene-star,

• concatenation,

• substitution (meaning, take a regular language and allow the substi-
tution of any words from other regular languages for its letters, e.g.,
replace a’s by words from ab∗ and b’s by words not containing consec-
utive a’s),

• subwords (any word that can be produced by deleting any or all letters),

• prefixes,

• suffixes,

• reversal.

2. You told a friend about the result that the language of strings of a’s whose
length is a power of two is not regular. They said “I wonder whether there is
a regular language of strings from a 17-letter alphabet where the length of
every string in the language is a power of two, and all powers of two occur?”
What do you think the answer to their question is? More importantly, can
you prove it?

Using the result on subsitution above – if this language were regular so would
be the language where we just substituted a for every letter (or in terms of the
underlying automaton, replaced all label arrows with a). That would make
the original language regular and it’s not. Therefore, there can be no such
language.

3. Design an NFA for the language of strings that contain either no pair of
consecutive b’s or no pair of consecutive a’s. Convert to a DFA.

0

a

b

A

B

Z

ϵ

ϵ

a

b

b

a

a

b

ϵ

ϵ

ϵ

ϵ

The intention of the labels is that in lower-case labelled states we’re happy
to take either letter (but happiest with the label) while in upper-case labelled
states we only want the corresponding letter.

To convert this to a DFA we note for convenience that the ϵ closure of 0 is
0abZ and that Z is in the ϵ-closure of all states except the garbage state ,
meaning that all the non-garbage states will be accepting, and we can dis-
count Z as a “place we might be” (so long as we’re still somewhere, i.e., have
not seen both aa and bb). We can also ignore 0 since we can’t get back there.

So, our initial state is ab, which has an a transition to aB and a b transition
to Ab. From aB, a takes us to a, and b takes us to Ab. Similarly, from Ab, b
takes us to b, and a takes us to aB. From a, a loops and b takes us to A, while
from b, b loops and a takes us to B. Finally, from A, b takes us to the empty
set (i.e., garbage) and a takes us to a, while from B, a takes us to garbage
and b takes us to b.

In a picture:

ab

aB

Ab

a

b

A

B

∅

a

b

a

b

b

a

a

b

b

a

a

b

a

b

a, b

4. Tutorial 4 asked you to develop a DFA that accepts the language EVEN-
EVEN, which consists of all strings containing both an even number of a’s
and an even number of b’s. . . . Now design an NFA in standard form that
accepts this language and then use the state elimination technique to derive a
regular expression for it. Compare your result to the one presented (without
use of the state elimination technique) in the solution to Tutorial 4, Question
4. Was this surprising?

The following regular expression was presented in the solution to Tutorial 4,
Question 4:

(aa+ bb+ (ab+ ba) (aa+ bb)∗ (ab+ ba))
∗

This was generated by thinking about paths through the four state automaton,
and specifically thinking about the fact that EVEN-EVEN is closed under
concatenation so we can just consider the minimal prefix of a word in EVEN-
EVEN that also belongs to EVEN-EVEN. Two such minimal prefixes are aa
and bb. If we start ab or ba (reaching a point where we have an odd number
of both symbols) then we we can bounce back and forth between the odd-
odd state and the odd-even or even-odd states (via aa or bb) but, at some
point must return to even-even via a second ab or ba).

As the regular expressions generated by state elimination can be much longer
than those designed carefully using human intuition, it is somewhat surpris-
ing to find that the state elimination algorithm reproduces the regular expres-
sion above, at least when eliminating states 01 and 10 before 11—elimating
11 first has not been tried.

5. Recall the language MULTI-6-b (introduced in Tutorial 4), which consists of
all strings with the following property: for some a in the string, the number

of b’s that follow it is a multiple of 6. We saw an NFA with seven states that
recognises it (9 states in “standard form”). Convince yourself that to convert
it to DFA will result in something like 64 states (“off by several” errors are
possible here) and that this is somehow necessary.

This foreshadowed the Myhill-Nerode theorem. The idea is the following –
for any subset, X , of {0, 1, 2, 3, 4, 5} we can easily construct a string where
for each and only x ∈ X there is an a in the string such that the number of b’s
following it is x. For instance with X = {0, 3, 5} we could use abbabbba.
The powers of b that can be appended to such a string in order to belong
to MULTI-6-b determine the set X (basically, k b’s can be appended if and
only if 6 − k is in X). So, two such words corresponding to different sets
must correspond to different states of the DFA (else they’d allow the same
continuations). Since there are 64 such sets, the DFA must have at least 64
states.

