
COSC341 TUTORIALS 9 AND 10
Exercises about building pushdown automata, context-free grammars, and check-
ing whether or not languages are context-free. As usual, Σ = {a, b} unless other-
wise specified.

1. Build a PDA and describe a context-free grammar for each of the following
languages:

(a) Equal, the set of strings having the same number of a’s as b’s in any
order.
PDA: Use a stack alphabet comprising symbols A and B and a bottom-
of-stack marker #. When reading an input if the stack is empty, or the
letter on the stack top matches the letter read, push another letter of
that type onto the stack (i.e., if top is A and we read a, we push A). If
the stack is not empty and the top is of the opposite type, then pop it
instead (i.e., if top is B and we read a, we pop).
CFG:

S → ϵ | aSbS | bSaS

The first S in each case above could be restricted to a word which has
equal a’s and b’s in which each prefix has at least as many a’s as b’s
(i.e., the specified b in the production rule is the first one that equalises
the number of a’s and b’s), but this is not necessary.

(b) {anbncm |n,m ≥ 0}.
PDA: Just push A’s when reading a’s and pop them when reading b’s.
Allow a non-deterministic transition to another state (the only accept-
ing one) in which only c’s can be read but they don’t affect the stack.
The only way to get empty stack and accepting state is to be in the
language above. If you just want ‘empty stack only’ as the acceptance
criterion, then start by pushing an X onto the stack without consuming
any input, then process a’s and b’s as above, and allow a transition that
pops X after which only c’s can be read but they don’t affect the stack.
CFG:

S → TC

T → ϵ | aTb
C → ϵ | cC.



(c) BalancedParentheses, the set of strings over {(, ), a, b} in which the
parentheses are properly balanced (and the other symbols can occur
arbitrarily).
PDA: Ignore anything that’s not a parenthesis. Push a token for each (
and pop one for each ).
CFG:

S → ϵ | aS | bS |(S)S

(d) PostFix, the set of strings over {a,+,−} that represent legitimate ex-
pressions written in postfix notation, where + is a binary operator, and
− a unary operator. That is, a should be accepted and pushed at any
time, + can be applied only if there are at least two elements in the
stack and reduces the stack size by 1, and − can be applied only if the
stack is non-empty and does not change the size of the stack.
PDA: Is basically described in the question. The only slight subtlety is
that we should use a different symbol for the first item in the stack as
for subsequent items so that we can tell whether + is allowed.
CFG:

S → ϵ | T
T → a | TT+ | T−

2. Verify that if L and K are context-free languages, and R is a regular lan-
guage then all of LK, L ∪K, L∗ and L ∩R are context-free.

Suppose we have PDAs for L and for K that accept by empty stack.

To get one for LK modify the one for L to start by adding a new symbol X
to the initially empty stack. Add a transition that consumes no input, pops
the X and transfers control to the PDA for K.

To get one for L ∪K just start with a non-deterministic transition to one or
the other.

To get one for L∗ use the same idea as for LK - just that if you see X at the
top of the stack you can either pop it (and accept), or restart (the fact that it’s
there means you have seen something in L so you’re either accepting that, or
concatenating it to . . . )

For L ∩ R just change the control of the underlying finite state machine
to pairs of states, one from L and one from a DFA for R. To accept, you



probably want to do the X trick as above, and allow the X to be popped and
execution terminated only if the current state of the DFA is accepting.

3. Apply the pumping lemma and write out detailed arguments showing that the
following languages are not context-free:

Note that I’ve been deliberately repetitive in the structure of the arguments –
this is intended to emphasise that the application of the pumping lemma is a
fairly standardised process.

(a) {anbmanbm |n,m ≥ 0}.
If this language were context-free then the pumping lemma would ap-
ply to it. That is, for any sufficiently long word in the language we
could find a short internal segment that could be pumped. But consider
the word aNbNaNbN where N is larger than our criterion for “suffi-
ciently long". A short internal segment can’t include both parts of the
first aN and parts of the last bN so, whatever we pump it will no longer
match the length of the part that’s missed. Therefore, we get a word
not in the language and hence a contradiction, i.e., the language is not
context-free.

(b) {ap | p is prime}.
If this language were context-free then the pumping lemma would ap-
ply to it. That is, for any sufficiently long word in the language we
could find a short internal segment that could be pumped. But con-
sider a word aN in the language (so N is prime) where N is larger
than our criterion for “sufficiently long". Pumping means that for some
0 < t < N all the numbers N+kt for k ⩾ 0 would be in the language,
i.e., prime. But, choosing k = N we get N +Nt = N(t+1) which is
visibly not prime as both N and t + 1 are greater than 1. So we get a
word not in the language and hence a contradiction, i.e., the language
is not context-free.
{anbnan |n ≥ 0}.

If this language were context-free then the pumping lemma would apply to
it. That is, for any sufficiently long word in the language we could find a
short internal segment that could be pumped. But consider a word aNbNaN

in the language where N is larger than our criterion for “sufficiently long".
But now the short internal segment can’t contain parts of both the initial
block of a’s and the final block of a’s. Therefore, pumping it either changes
the balance between those two blocks or, if neither is involved changes the



number of b’s without changing the number of a’s. In either case we get a
word not in the language and hence a contradiction, i.e., the language is not
context-free.

4. Find two context-free languages whose intersection is not context-free.

By a modification of the argument in 1(b) above, both the language {anbnak :
k, n ⩾ 0} and the language {akbnak : k, n ⩾ 0} are context-free. But their
intersection is the language {anbnan |n ≥ 0} which we saw in Question 3(c)
was not context-free.

5. Show, by intersection with a suitable regular language and deriving a con-
tradiction, that Square, the set of all words of the form ww where w ∈
{a, b}∗, is not context-free.

The language {anbmanbm |n,m ≥ 0} is the intersection of Square and the
regular language a∗b∗a∗b∗. So, if Square were context-free, then so would
{anbmanbm |n,m ≥ 0} be, according to the last part of Question 2. But we
know this is not the case, so Square can’t be context-free.

6. We saw in Question 3(c) that {anbnan |n ≥ 0} is not context-free. Imagine
a machine like a PDA that uses a queue rather than a stack. How could you
recognise this language?

Start by reading a’s and pushing A’s. Now switch to reading b’s, removing
an A and pushing (in queue fashion) a B. Finally, read a’s and remove B’s.
If the queue winds up empty you have exactly a word of the form you wanted
to recognise.


