COSC 341 Tutorial 14 Solutions Exercises from Notes 12

1 Exercises

1. Consider the language {a™ | n is composite}.

® Describe a simple mechanism for accepting this language on a normal two-tape Turing
machine, with an input tape and an oracle tape.
The genie just writes a proper factor on the oracle tape and then we check it
(see previous solutions).

® Do the same, but with a “non-deterministic transitions” two-tape machine.
There’s an initial phase where we write some block of a’s on the second tape.
At some point we non-deterministically transition to a phase where we check
that block represents a proper factor.
Any accepting computation demonstrates that n has a proper factor so we
can’t be forced to accept a prime (and every composite number has at least
one accepting computation).

2. Consider the following problem: given two input tapes, one containing a string b", the
other containing input of the form a™ #a"™?# - - - #a™* (i.e. a sequence of blocks of a’s),
determine whether some subset of the blocks of a’s is of total length n (this is called the
SUBSET-SUM problem). Show that a three tape TM with oracle tape makes this problem
almost trivial. Likewise model it in a TM with non deterministic transitions. Finally,
consider the difficulties in dealing with it deterministically.

On the oracle tape the genie just writes out a binary string wjws . .. wj, indicating
which of the a’s to use (i.e., if w; = 1 we should use a™i as one of the chosen
blocks and not otherwise. We can easily check that this is correct by computing the
indicated sum (by concatenation on another tape) and then comparing the length
to the block of b’s (or, even more easily, must by moving m; places along the block
of b’s when we're told to use a” and checking that we get exactly to the end.

Non-deterministically is similar - we move along the a tape and each time we hit
a new block we decide non-deterministically whether to use it or not. If so, we
advance along the b tape at the same time, if not, we just move to the next a block.

The deterministic issue is that it seems difficult to guess whether we should be
using any particular block or not. So the basic search procedure “try every pos-

COSC 341 Tutorial 14 Solutions Exercises from Notes 12

sibility” requires 2* trials. There is some improvement possible but, at least if we
represent the numbers in binary (rather than unary as here) the problem is known
to be NP-complete.

3. (Review) Remember that reqular languages form a subset of the context free languages,
which in turn form a subset of the recursive languages, and those are a subset of the recur-
sively enumerable languages (though, at the moment, we can’t be sure that there are any
recursively enumerable languages that are not recursive). To prove that a language is regu-
lar, we can either design a finite state automaton that accepts it, or show that it is generated
by a reqular language. To prove that a language is not regqular, we usually use the pump-
ing lemma for regular languages or the Myhill-Nerode theorem. Similarly, to prove that a
language is context free, we either show that it is accepted by a push down automaton, or
give a context free grammar for it. Again, to prove a language is not context free, we use
the pumping lemma for a context free languages. To prove that a language is recursive, we
design a TM which halts on all inputs and accepts it. So far, we have no mechanisms for
proving that a language is not recursive. For each of the following languages determine
exactly which type it is, and prove it (so, for instance if you are claiming it is context-free,
you should both give a grammar/PDA and an argument that it is not reqular.)

(@) L = {a*ba® |0 <k,1}
This is regular. We can have a cycle of three states that we move around using
a’s. From the initial state (which we visit when there are 0, 3, 6, ... a’s) thereis a
b transition to a new cycle of two states (also on a’s alone). The only accepting
state is the one we move to along that b.

(b) L = {a*ba*|0 < k}
This is context free but not regular. To see that it’s not regular observe that for
each k, ba®* € Suff(w, L) if and only if w = a®*. So the suffix languages for
the words a3, a5 @ ...are all distinct and by the Myhill-Nerode theorem the
language is not regular.

To see that it’s context free, note the following grammar works:

S — blaaaSaa.

A PDA also isn’t too hard to describe - in an initial “pushing” phase, push
one thing onto the stack for every third a (use state transitions to allow for

2

COSC 341 Tutorial 14 Solutions Exercises from Notes 12

(©)

“reading a pushing nothing” in the first two a’s of a block of three). Then
transfer (reading a b leaving the stack alone) to a popping state where we pop
on A for every pair of a’s (or we could have pushed for two out of three in the
tirst phase and now pop for every one.)

L = {a*ba¥ |0 < k}
This is not context free but it is recursive.

To see that it’s not context free suppose that it were and consider the pumping
lemma. For some p and all words z in the language of length > p we can write
z = uwvwxy where |vwz| < p, [vz| > 0 and for all i, uwv'wz'y € L.

Take z = a?’baP. The only factorisation that has a hope of succeeding would
have v consisting of some non-empty segment of a’s before the b, and = con-
sisting of some non-empty segment of a’s after the b. Say |u| = s and |z| = t.
But then, for the pumping lemmat to apply would require:

PP (i—Ds=(p+ (-1t
for all i. That is:
(i—1)s=2(i — 1)t + (i — 1)*?
s=2t+ (i—1)t?
for all i. But the LHS is constant and the RHS is not (unless ¢t = 0 - but then s =

0 as well which is not permitted). So this is a contradiction and the language
is not context free.

It’s clearly recursive since we can actually do arithmetic in Turing machines
('l omit the details!)

