COSC 341 Tutorial 15 Solutions Exercises from Notes 13

1 Exercises

Determine which of the following decision problems are undecidable and which are de-
cidable. Remember the key to proving that “Problem P is undecidable” is to provide an
argument that “If we had a black box that solved P, then we could solve X” where X is
some problem already known to be undecidable (most frequently the halting problem).
That is: if problem X is reducible to problem P, and X is undecidable, then P must be
undecidable.

(Note that a transition is any single “read-write-move” event, even if it does not involve
a change of state or tape)

1. SOMETIMES HALT
Instance: A Turing machine M.
Problem: Does M halt on some input?

The reduction we’ve used previously works to show this is undecidable. Convert
an instance R(M )w of HALT to one of SOMETIMES HALT by converting it to a Turing
machine N (which depends on M and w) that works as follows:

¢ Erase any contents of the input tape
¢ Write w on the input tape
¢ Run M

This machine N is positive for SOMETIMES HALT if and only if R(M )w was positive
for HALT. Since we can construct N from R(M )w, we have a reduction of HALT to
SOMETIMES HALT and hence SOMETIMES HALT is undecidable.

2. EVEN HALT
Instance: A Turing machine M and an input word w.
Problem: Does M halt on input w after an even number of transitions?

It’s clearly feasible to add some sort of dummy transitions so that given a machine
M we can construct another one that takes 2 transitions for every one of M’s. That
machine halts after an even number of transitions on input word w if and only if




COSC 341 Tutorial 15 Solutions Exercises from Notes 13

M halts on w. So, if we could decide EVEN HALT we could also decide HALT and
therefore EVEN HALT must be undecidable.

3. BOUNDED HALT
Instance: A Turing machine M, an input word w and an integer n.
Problem: Does M halt on input w without making more than n transitions?

This is decidable. We simply add a “clock tape” that we initialise to n and subtract
one from on every transition. We halt and accept if we don’t run out of “time” and
halt and reject otherwise when we do.

4. (*) NO WRITE
Instance: A Turing machine M and an input word w.
Problem: Does M halt on input w without making any change to the tape (i.e. all
transitions only move the tape head)?

This is a bit tricky. If the read-write head stays within a bounded region of the
tape (e.g., the region of the actual input) then we can decide this by recording each
combination of tape head position and state. There are only a finite number of such
pairs so either we will halt, or we will see a repeated pair at some point in which
case we're in an infinite loop (and can announce that).

So let’s do that anyway — let’s record, for each position on the original input tape
the state we're in when we visit that cell (each time we do so). If we see a duplicate
then we decide that M is not going to halt.

If M is not going to halt but we don’t observe that using the technique above then
it must be the case that at some point we move beyond the original input area and
never return. So, whenever the head is in that region we just record the current
state and the location where we saw it. Whenever we return to the original input
we can wipe that complete record. If we do get stuck there will be a point at which
we are in some state, and later we are in the same state but further along the tape
(and we didn’t return to the input area in between). Now we’re caught in a loop
- we're going to repeat all those transitions, not return to the input (because we
started further along) and we’ll be back in the same state again, still further along
the tape. So, when that happens we can stop and announce “not halt”




COSC 341 Tutorial 15 Solutions Exercises from Notes 13

In other words - we'll recognise that we do halt when we do, and if we’re not going
to halt, we’ll be able to diagnose that in finite time —i.e., we can decide NO WRITE.

5. (Review) Show that the language HALT consisting of all strings R(M )w such that M halts
on input w is recursively enumerable. What can be said about its complement?

It’s recursively enumerable because it’s precisely the language accepted by a Uni-
versal Turing Machine. We know that it’s not recursive, and therefore its comple-
ment must not be recursively enumerable (since, if both a language and its comple-
ment are recursively enumerable, then the language is recursive.)




