
COSC 341 Tutorial 16 Solutions Exercises from Notes 14

1 Tutorial problems

We’ll be using the following decision problems:

PRIME

Instance: A positive integer n.
Problem: Is n prime?

FACTOR-BOUND

Instance: A pair of positive integers m and n.
Problem: Does m have a divisor d such that 1 < d ⩽ n?

Whenever one has a property, X , of languages, its “co-”property, co-X holds of a lan-
guage L exactly when Σ∗ \ L, i.e., the complement of L, has property X .

1. Why are co-P and P the same set of languages?

If a language, L, is in P then there is a deterministic polynomial-time algorithm
that, given a word w, always halts and answers “yes” if w ∈ L and “no” if w ̸∈ L.
Switching the answers shows that the complement of L is also in P, i.e., that P and
co-P are the same set of languages.

2. Please tell me if you have determined whether or not co-NPand NP are the same set of
languages.

That would be great – it’s an open problem. The issue now is that if a language is
in NP it means the genie can provide us with a certificate that proves a given word
belongs to the language (which we can verify in polynomial-time). But, to check
that it’s not in the language would (at least in the most obvious approach) require
considering all possible certificates and checking that they are invalid. But the set
of possible certificates is certainly exponentially large – so that’s not good enough.

3. Show that PRIME is in co-NP. In fact, though this is by no means obvious, PRIME is in P.

The complement of PRIME is COMPOSITE and a certificate for an integer n to be
composite is just any proper factor d (i.e., 1 < d < n and n is a multiple of d).
We can easily check the validity of a certificate in polynomial time (even when we
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write the integers in binary rather than unary – as we’re obliged to do) since the
basic arithmetic operations are easily seen to be in P.

4. Show that FACTOR-BOUND is in NP.

For a positive instance of FACTOR-BOUND the genie can just tell us an appropriate
d and we can check the details.

5. Show that FACTOR-BOUND is in co-NP (hint(?): this requires knowing that PRIME is in
P).

The pair (m,n) is a negative instance for FACTOR-BOUND if and only if all of m’s
prime factors are greater than n. So, a prime factorisation of m allows us to check
that. That is, we ask the genie to write down a prime factorisation of m. Since
PRIME is in P, we can check that the factors given are prime, that their product is
m and that all are greater than n.

6. PSPACE is the class of all decision problems that can be solved on a Turing machine with
a polynomial bound on the use of space (that is, there are some constants A and c such
that if the input is of size n, the tape-head never moves more than Anc cells away from the
left-hand end of the tape).

CLOBBER is a two-player game played with black and white stones occupying (some finite
set of) squares within an infinite grid. One player, Bella (she/her) controls the black stones
and the other, William (he/him) controls the white ones. A move for Bella is to take one of
her stones, move it to an adjacent square occupied by one of William’s stones, and remove
his stone from the board. William moves similarly, but using his stones to clobber Bella’s.
The game is over when one of the players is unable to make a move (because there are no
pairs of stones of opposite colours next to each other), and the player who made the last move
wins. Consider the problem:

WIN-CLOBBER

Instance: A CLOBBER position
Problem: Does Bella have a winning strategy moving first?

Show that WIN-CLOBBER is in PSPACE. Does it seem likely to be in P, NP, or co-NP?

(This is a general argument about games of this type – nothing special about CLOB-
BER)
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Since each move in a game of CLOBBER decreases the number of stones by one, the
length of a CLOBBER game is certainly bounded by the number of stones present.
Furthermore, all stones always occupy positions that were occupied in the initial
position, so any position can be recorded in space proportional to the size of the
original game.

The reachable positions from the initial one can be thought of as a finite tree (we’re
only concerned about space and not time, so if the same position is reachable in two
different ways there’s no problem with considering it twice). At the leaf vertices of
this tree (positions where no moves are possible – also called terminal positions) we
know who the winner is (the player who made the last move) so we can imagine
labelling them all with B or W according to who won.

Now at any node in the tree if all of its children have labels and it is Bella’s turn
then, if any one of the children is labelled B, we can label that node B (she has a
good move - to a node labelled B), while if all are labelled W we must label that
node W too (any move by Bella can be countered). There’s a corresponding set of
rules for labelling nodes when it’s William’s turn.

But the tree is exponentially big! We can’t store the whole tree. Fortunately, we
don’t need to – because we can do a depth-first search to label the root node. Con-
sider the pseudocode (using 0 and 1 for the player labels)

Algorithm 1 Label(n, p) (label node n with player p ∈ {0, 1} to play)

if n is terminal then
return 1− p {In a terminal position, the player whose turn it is has lost.}

end if
for all children n′ of n do

if Label(n′, 1− p) = p then
return p {n′ is a good move for p}

end if
end for
return 1− p {p has no good move}

The extra storage needed is in the list of children of a given node (so that we can
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execute the “for all” statement) and the call stack of the algorithm (so that we can
make the recursive call inside that loop). So the total amount of space required is
bounded by the product of :

• the maximum number of moves available at any point,

• the maximum possible length of a game, and

• the space required to represent a position.

Since all of these are clearly polynomial (in fact linear) in the size of the description
of the initial position, this algorithm runs in polynomial space, i.e., WIN-CLOBBER

is in PSPACE.

The general rule is that tree search problems that can be accomplished by depth-
first-search are usually in PSPACE.

It seems unlikely that WIN-CLOBBER is in P, NP, or co-NP because the only (ob-
vious) method for determining whether Bella has a winning strategy does require
investigating most (or all) of this tree which is exponentially large in the size of the
position in general.

In fact it turns out that even the solitaire problem for Clobber,“can a position be
reduced to a single stone”, is NP-complete. As of 2009 the complexity status of the
two-player version is unknown, but it’s believed to be PSPACE-complete.
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