COSC341 TUTORIAL 2

The theme of this tutorial is to explore the definition of strings a bit, and to understand the relationships between regular grammars and DFAs.

Recall that a string of length n over an alphabet Σ is actually a function from the set $\{0, 1, 2, ..., n-1\}$ (which I'll denote [n]) to Σ and that the set of all strings (of any length, including the empty string) over Σ is denoted Σ^* . The notation for the length of a given string w is |w|.

- 1. If Σ has k elements how many different strings of length n are there over Σ ?
- 2. If $w \in \Sigma^*$ and $m, i + j \le |w|$ how are:
 - the prefix of w of length m,
 - the suffix of w of length m, and
 - the substring of w starting at position i of length j

defined?

- 3. If $w, v \in \Sigma^*$ how are:
 - the result of prepending $a \in \Sigma$ to w,
 - the result of appending $a \in \Sigma$ to w, and
 - the result of concatenating \boldsymbol{w} and \boldsymbol{v}

defined?

- 4. Determine a regular grammar for the language of all strings containing an even number of as (over $\Sigma = \{a, b\}$).
- 5. Let A and B be DFAs over the same alphabet, Σ . Can you describe DFAs that accept:
 - The complement of the language $L(\mathbf{A})$, i.e., the set of all strings <u>not</u> belonging to $L(\mathbf{A})$,
 - The intersection of $L(\mathbf{A})$ and $L(\mathbf{B})$, i.e., the set of all strings belonging to both of $L(\mathbf{A})$ and $L(\mathbf{B})$, and
 - The union of $L(\mathbf{A})$ and $L(\mathbf{B})$, i.e., the set of all strings belonging to <u>at</u> least one of $L(\mathbf{A})$ and $L(\mathbf{B})$.
- 6. Repeat the previous question for the languages L(G) and L(H) associated to two right-regular grammars over Σ .