
COSC341 TUTORIAL 5
Checking to make sure we understand how to convert between all the different versions of regular
languages and a bit more on closure properties. Unless otherwise specified use the alphabet Σ =
{a, b}.

1. A closure property for the regular languages is a construction that applies to a regular language
(or languages) and is guaranteed to produce another regular language. For example “the union
of two regular languages is regular”. What closure properties have we mentioned so far? What
others can you think of?

2. You told a friend about the result that the language of strings of a’s whose length is a power
of two is not regular. They said “I wonder whether there is a regular language of strings from
a 17-letter alphabet where the length of every string in the language is a power of two, and all
powers of two occur?” What do you think the answer to their question is? How is this related
to the previous question? Does this give you a proof?

3. Near the end of Lecture 1 (on the slide titled “What does this machine do?”) we introduced the
following DFA over the alphabet {a, b} that accepts strings containing no pair of consecutive
b’s:

0 1 2

a

b

a
b

a,b

Design an NFA for the language of strings that contain either no pair of consecutive b’s or no
pair of consecutive a’s. Convert it to to a DFA.

4. Tutorial 4 asked you to develop a DFA that accepts the language EVEN-EVEN, which consists
of all strings containing both an even number of a’s and an even number of b’s. This was the
suggested solution:

00 10

01 11

a
b

a

b

a

b
a

b

Now design an NFA in standard form that accepts this language and then use the state elimina-
tion technique to derive a regular expression for it. Compare your result to the one presented
(without use of the state elimination technique) in the solution to Tutorial 4, Question 4. Was
this surprising?



5. Recall the language MULTI-6-b (introduced in Tutorial 4), which consists of all strings with the
following property: for some a in the string, the number of b’s that follow it is a multiple of
6. We saw an NFA with seven states that recognises it (9 states in “standard form”). Convince
yourself that to convert it to DFA will result in something like 64 states (“off by several” errors
are possible here) and that this is somehow necessary.


